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Abstract
We generate new mathematical tools with which to quantify the macroscopic
topological structure of large directed networks. This is achieved via a statistical
mechanical analysis of constrained maximum entropy ensembles of directed
random graphs with prescribed joint distributions for in- and out-degrees and
prescribed degree–degree correlation functions. We calculate exact and explicit
formulae for the leading orders in the system size of the Shannon entropies and
complexities of these ensembles, and for information-theoretic distances. The
results are applied to data on gene regulation networks.

PACS numbers: 87.18.Vf, 89.70.Cf, 89.75.Fb, 64.60.aq

1. Introduction

There is a great demand, especially in cellular biology, for precise mathematical tools with
which to quantify topological structure in large observed networks. Such tools can be used to:
compare networks; distinguish between meaningful and random structural features; and, to
define and generate tailored random graphs as null models or network proxies. In a previous
paper [1], it was shown how a specific family of tailored random graph ensembles, with
controlled degree distributions and controlled degree–degree correlation functions, is well
suited for generating such tools. The authors of [1] applied techniques from statistical
mechanics to calculate explicit formulae for the leading orders in the systems size of
the Shannon entropy per node for these tailored graph ensembles, and related quantities
such as complexity and information-theoretic distances. Subsequent papers were devoted
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to the numerical generation of graphs [2] from the proposed ensemble families and the
application in cellular biology of the resulting mathematical tools [3]. For an overview see
e.g. [4]. The main limitation of [1] was that it only dealt with nondirected networks and
graphs. In this paper we take the next step and develop the corresponding theory for directed
ones.

Extending the methods in [1] to directed networks will enable their application to important
new problems especially in cellular biology. Other applications could include the analysis
and control of communication and computation networks. For example, to understand the
processes driving a cell it is necessary to go beyond studying individual genes; one needs
to study their interactions. Information on how genes interact within the cell is commonly
represented by a directed graph: the gene regulation network. High-throughput methods have
generated a wealth of data on gene regulation. We now need powerful mathematical tools to
analyse these data. By focussing on which properties are the most important to the structure
of the biological signalling network, we can envisage being able to postulate mechanisms for
how the network evolved and came to fulfil its function, and build better models for such
networks. Evaluating the fit of a network model to network data is often seen as a formidable
computational challenge [5], which is usually overcome by looking at fit based on comparing
network properties. Our approach gives a rigorous quantitative method for prioritising
network properties; this is important as different properties might promote different potential
models.

The use of statistical mechanics to quantify the information content of network structure is
well established; see e.g. [1, 6–8]. Most work so far has focused on undirected networks. The
network properties most frequently studied are degree distributions, clustering coefficients,
assortativities and path length statistics. There has also been research on occurrences of
motifs and subgraphs, motivated by the idea that if a network favours specific local topological
patterns then these might reflect common local processes. A particular benefit of the approach
followed here and in [1] is the compact and explicit nature of the final formulae. Although their
derivations are involved in places, the final results are compact. They take easily measured
topological observables as input, avoid the need for numerical simulations or approximations,
and are easy and efficient to use as our (biological) datasets grow. We therefore imagine
that this line of research will continue to develop, by adding further macroscopic network
observables, beyond degree statistics and degree correlation functions. Each addition will
make the method more powerful and useful.

The specific quantities calculated in this paper are: the Shannon entropy and complexity
of directed graph ensembles with controlled degree distributions; the Shannon entropy and
complexity of directed graph ensembles with controlled degree distributions and controlled
degree–degree correlation functions; and, the symmetrised Kullback–Leibler distance between
pairs of such ensembles. For each of these we calculate the leading orders in the network
size, expressed in terms of the controlled degree distributions and degree–degree correlation
functions of the ensembles concerned. We illustrate the use of our results in section 5 with
applications to experimental data on gene regulation networks.

We adopt the following notation conventions. Each directed graph with N nodes is defined
by a matrix c = {cij }, with entries cij ∈ {0, 1} indicating whether (cij = 1) or not (cij = 0)
there is a directed arc from node j to node i. For each node i we define the so-called in- and
out-degrees, viz. kout

i (c) = ∑
j cji and kin

i (c) = ∑
j cij ; in nondirected graphs such as in

[1] one would have had kin
i (c) = kout

i (c) for all i. We write the pair of degrees at a site i as
�ki(c) = (kin

i (c), kout
i (c)). Boldface letters will represent ordered sets with N elements, such

as kin = (kin
1 , . . . , kin

N), or kin(c) = (kin
1 (c), . . . , kin

N(c)).
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2. Directed graphs with controlled in- and out-degree distributions

Here we calculate the Shannon entropy of an ensemble of directed random graphs constrained
by a common joint distribution of in- and out-degrees. Via suitable adaptations of the methods
developed for nondirected networks, we achieve a standard path-integral form to which we
can apply the method of steepest descent. This leads to an elegant analytical expression for
the entropy of the ensemble in the leading orders in N. The key term takes the form of a
Kullback–Leibler distance between the imposed joint degree distribution and the Poissonnian
one that would have been found upon generating directed arcs independently.

2.1. Definition of the problem

We consider an ensemble of directed random graphs, where degree pairs �ki = (
kin
i , kout

i

)
are

for each node i drawn independently from a specified joint degree distribution p(�k):

p(c) =
∑

�k1...�kN

[∏
i

p(�ki)
]
p(c|�k1 . . . �kN) (2.1)

p(c|�k1. . . �kN) =
∏

i δ�ki ,�ki (c)

Z(�k1. . . �kN)
, Z(�k1. . . �kN) =

∑
c

∏
i

δ�ki ,�ki (c). (2.2)

For this ensemble we want to find the Shannon entropy per node S = −N−1 ∑
c p(c) log p(c),

which informs us about the effective number N = exp(NS) of graphs in the ensemble and
the complexity of directed graphs with the imposed degree statistics p(�k). Upon substituting
(2.2) into the entropy formula, and after some simple manipulations and use of the law of
large numbers, one finds that the entropy per node takes the form

S = 1

N

∑
�k1...�kN

[∏
i

p(�ki)
]

log Z(�k1 . . . �kN) −
∑

�k
p(�k) log p(�k) + εN, (2.3)

where εN → 0 as N → ∞. To make the first term in this expression more tractable, we
transform Z(�k1 . . . �kN) into an average involving an alternative measure. If we denote the
average degree by k̄ = N−1 ∑

i k
in
i = N−1 ∑

i k
out
i , we may define the measure

w(c|k̄) =
∏
ij

[
k̄

N
δcij ,1+

(
1− k̄

N

)
δcij ,0

]

=
[

1− k

N

]N(N−1) [
k/N

1−k/N

]Nk(c)

≡ W(k, k(c)). (2.4)

Since this measure depends on the graph c via k̄(c) only, we can write the partition function
Z(�k1 . . . �kN) in terms of an average over the measure (2.4), viz.

Z(�k1 . . . �kN) = 1

W(k, k)

∑
c

w(c|k)
∏

i

δ�ki ,�ki (c). (2.5)

Introducing the notation 〈f (c)〉κ = ∑
c w(c|κ)f (c) to represent averages over the measure

(2.4) with average connectivity κ , the entropy per node can be written as

S = 1

N

∑
�k1...�kN

[∏
i

p(�ki)
]

log
〈∏

i

δ�ki ,�ki (c)

〉
k̄
−
∑

�k
p(�k) log p(�k)

− 1

N

∑
�k1...�kN

[∏
i

p(�ki)
]

log

⎡
⎣
[

1 − k

N

]N(N−1) [ k/N

1 − k/N

]Nk

⎤
⎦ + εN

3
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= 1

N

∑
�k1...�kN

[∏
i

p(�ki)
]

log
〈∏

i

δ�ki ,�ki (c)

〉
k̄
−
∑

�k
p(�k) log p(�k)

+ 〈k〉[ log(N/〈k〉) + 1
]

+ εN (2.6)

with limN→∞ εN = 0, and with 〈k〉 = ∑
�k kinp(�k) = ∑

�k koutp(�k). All the complexity of the
problem is thus contained in the first term of (2.6):

φ = 1

N

∑
�k1...�kN

[∏
i

p(�ki)
]

log
〈∏

i

δ�ki ,�ki (c)

〉
k̄
. (2.7)

2.2. Entropy evaluation

Using Fourier representations of the Kronecker deltas in (2.7) and some straightforward
manipulations brings us to

φ = 1

N

∑
�k1...�kN

[∏
i

p(�ki)

]
log

∫ π

−π

∏
i

[
dωi dψi

4π2
ei[ωik

in
i +ψik

out
i ]

]
L(ω, ψ) (2.8)

L(ω, ψ) = exp

⎡
⎣k̄N

(
1

N

∑
i

e−iωi

)⎛
⎝ 1

N

∑
j

e−iψj

⎞
⎠− k̄N + O(N0)

⎤
⎦ . (2.9)

Introducing the quantities R(ω) = N−1 ∑
i e−iωi and S(ψ) = N−1 ∑

i e−iψi , and inserting∫
dR dSδ[R − R(ω)]δ[S − S(ψ)] with δ-functions written in integral form, allows us to write

L(ω, ψ) =
∫

dR dR̂ dS dŜ

4π2/N2
eN[i(R̂R+ŜS)+k̄(RS−1)]+O(N0)

∏
i

e−i[R̂e−iωi +Ŝe−iψi ]. (2.10)

Substituting this back into φ, using the law of large numbers, then gives

φ = 1

N

∑
�k1...�kN

[∏
i

p(�ki)
]

log
∫

dR dR̂ dS dŜ eN
(R,R̂,S,Ŝ)+O(log N) (2.11)

where


(R, R̂, S, Ŝ) = i(R̂R+ŜS) + k̄(RS−1) +
∑
kin

p(kin) log
∫ π

−π

dω

2π
ei[ωkin−R̂ e−iω]

+
∑
kout

p(kout) log
∫ π

−π

dψ

2π
ei[ψkout−Ŝe−iψ ]. (2.12)

The average in (2.11) over degree sequences is now obsolete since the argument depends in
leading order in N on their distribution only, and (2.11) can be evaluated by steepest descent:

lim
N→∞

φ = extrR,R̂,S,Ŝ
(R, R̂, S, Ŝ]. (2.13)

We can simplify 
 by doing the remaining integrals, using∫ π

−π

dω

2π
ei[ωk−Ae−iω] =

∑
m�0

(−iA)m

m!

∫ π

−π

dω

2π
eiω(k−m) = (−iA)k

k!
. (2.14)

Hence


(R, R̂, S, Ŝ) = i(R̂R+ŜS) + k̄(RS−1) +
∑
kin

p(kin) log[(−iR̂)k
in
/kin!]

+
∑
kout

p(kout) log[(−iŜ)k
out
/kout!]. (2.15)

4
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Differentiation of 
 gives the following saddle-point equations:

− iR̂ = k̄S, −iŜ = k̄R (2.16)

iRR̂ + k̄ = 0, iSŜ + k̄ = 0. (2.17)

We conclude that RS = 1, and hence at the saddle-point we have


(R, R̂, S, Ŝ) =
∑
kin

p(kin) log πk̄(k
in) +

∑
kout

p(kout) log πk̄(k
out) (2.18)

with the Poissonnian degree distribution πk̄(k) = e−k̄ k̄k/k!.

2.3. Final analytical expression for the entropy of the ensemble

The intermediate result (2.18) can now be substituted back into the expression for the entropy
of the constrained random graph ensemble defined in (2.6), giving

S = k̄[log(N/k̄) + 1] −
∑

kin,kout

p(kin, kout) log

(
p(kin, kout)

πk̄(k
in)πk̄(k

out)

)
+ ζN, (2.19)

where k̄ is the average connectivity, N is the number of nodes in the network, p(kin, kout) is its
degree distribution that constrained the random graph ensemble, and limN→∞ ζN = 0.

The compact form of (2.19) enables us to interpret and understand this result for the
entropy per node. For example, we can consider what the result would have been if the
constraint on the ensemble had been less restrictive. If our ensemble was a maximum entropy
ensemble on the space of all directed graphs, but now constrained by the average degree
only (as opposed to the full joint in- and out-degree distribution), then the entropy per node
would have been S = k̄[log(N/k̄) + 1]. We see that this is identical to what we would obtain
from (2.19) if the constraining degree distribution was p(kin, kout) = π(kin)π(kout); a trivial
calculation confirms that in the maximum entropy ensemble with constrained average degree
one indeed has p(kin, kout) = π(kin)π(kout) for N → ∞. Similarly, if we had chosen a
maximum entropy ensemble of directed graphs constrained by a prescribed degree sequence
(as opposed to a joint degree distribution), then the entropy would have taken the form

S = k̄
[

log(N/k̄) + 1
]

+
∑

kin,kout

p(kin, kout) log[πk̄(k
in)πk̄(k

out)] + ζN . (2.20)

This value is seen to be simply (2.19) minus the Shannon entropy of the joint degree distribution
p(kin, kout), reflecting the possible ways to relabel sites in the original ensemble; this freedom
is removed once we specify the individual degrees rather than their distribution.

3. Directed graphs with controlled degree distributions and degree–degree correlation
functions

We extend our calculation to directed graph ensembles that are constrained further, by imposing
a degree–degree correlation function in addition to a degree distribution. Degree-degree
correlations in networks are known to carry valuable information. They can give rise to
properties such as ‘assortativity’ or ‘disassortativity’ and often reflect the algorithm responsible
for a network’s generation. One such algorithm, ‘preferential attachment’, is well illustrated
by the World Wide Web, where pages are more likely to be ‘linked’ to if they already have

5
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many pages linking to them. Preferential attachment models such as [6] gained credibility by
reproducing the typical fat tails often found in the degree distributions of real networks.

3.1. Definition of the problem

We now wish to generate graphs with degree pairs
(
kin
i , kout

i

)
again drawn independently

from the distribution p(�k) = p(kin, kout), but now the link probabilities are modified by
some function Q(�ki, �kj |p̄) of the degrees of the nodes concerned, and their distribution, with
�ki = (

kin
i , kout

i

)
:

p(c|p,Q) =
∑

�k1...�kN

[∏
i

p(�ki)
]
p(c|�k1 . . . �kN,Q) (3.1)

p(c|�k1 . . . �kN,Q) = w(c|�k1 . . . �kN,Q)
∏

i δ�ki ,�ki (c)

Z(�k1 . . . �kN,Q)

Z(�k1 . . . �kN,Q) =
∑

c

w(c|�k1 . . . �kN,Q)
∏

i

δ�ki ,�ki (c).

(3.2)

The difference with the graph ensemble in the previous section is the appearance of a new
measure w(c|�k1 . . . �kN,Q), defined as

w(c|�k1 . . . �kN,Q) =
∏
i 	=j

[
k

N
Q(�ki, �kj |p̄)δcij ,1+

(
1− k

N
Q(�ki, �kj |p̄)

)
δcij ,0

]
(3.3)

with Q(�ki, �kj |p̄) � 0 for all (�ki, �kj ), and with the distribution p̄(�k) = N−1 ∑
i δ�k,�ki

and

the average degree k = N−1 ∑
i k

in
i = N−1 ∑

i k
out
i of the imposed degree sequence. The

objective of the measure (3.3) is to deform the graph probabilities such as to impose a specific
correlation profile between the degrees of connected nodes, by a suitable choice of the kernel
Q(., .). We take Q(., .) to be normalized such that w(c| . . .) is asymptotically consistent with
the average degree k̄. This means that we demand N−2 ∑

ij Q(�ki, �kj |p̄) = 1. Equivalently,∑
�k,�k′ p̄(�k)p̄(�k′)Q(�k, �k′|p̄) = 1, which explains why Q(., .) depends on the distribution p̄.

The entropy per node S of our ensemble is

S = −
∑

c

p(c|p,Q)�(c|p,Q) (3.4)

�(c|p,Q) = N−1 log p(c|p,Q). (3.5)

3.2. Entropy evaluation

In appendix A we calculate the quantity (3.5) in leading orders in N, resulting in formula
(A.23). Substitution into expression (3.4) for the entropy, followed by doing the average over
p(c|p,Q) and some simple re-arranging of terms, then gives us

S = k̄
[

log(N/k) + 1
]−

∑
�k

p(�k) log

[
p(�k)

πk̄(k
in)πk̄(k

out)

]

− k̄
∑
�k,�k′

W(�k, �k′) log

[
R(�k|p,Q)Q(�k, �k′|p)S(�k′|p,Q)

W1(�k)W2(�k′)

]
+ ζ̃N (3.6)

6
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with limN→∞ ζ̃N = 0, πk̄(k) = e−k̄ k̄k/k!, and k̄ = ∑
�k p(�k)kin = ∑

�k p(�k)kout. The kernel
W(�k, �k′) and its two marginals W1,2(�k) in this expression are as defined in (A.8, A.9, A.10),
but now calculated for graphs from our ensemble (3.1). Similarly, the quantities R(�k|p,Q)

and Q(�k|p,Q) are now solved from

R(�k) = p(�k)kin

k
∑

�k′ Q(�k, �k′|p)S(�k′)
, S(�k) = p(�k)kout

k
∑

�k′ Q(�k′, �k|p)R(�k′)
(3.7)

in which the distribution p(�k), its associated average k̄, as well as the kernel Q(�k, �k′|p),
correspond to ensemble (3.1). Thus the correct normalization of the kernel Q(., .) is∑

�k,�k′ p(�k)p(�k)Q(�k, �k′|p) = 1. What remains is to express the distribution W(�k, �k′|p,Q) for
ensemble (3.1) in terms of {p,Q}. This is done in appendix B, resulting in (B.3):

lim
N→∞

W(�k, �k′) = R(�k|p,Q)Q(�k, �k′|p)S(�k′|p,Q) (3.8)

in which R(�k|p,Q) and S(�k|p,Q) are once more the solutions of (3.7), but now with p̃(�k)

replaced by p(�k). Combination with (3.6) then gives us

S = k̄[log(N/k̄) + 1] −
∑

�k
p(�k) log

[
p(�k)

πk̄(k
in)πk̄(k

out)

]

− k̄
∑
�k,�k′

W(�k, �k′) log

[
W(�k, �k′)

W1(�k)W2(�k′)

]
+ ε̃N (3.9)

with limN→∞ ε̃N = 0. Compared to the entropy per node (2.20) of ensembles where only the
in-out degree distributions are imposed, we see that imposing in addition our new constraint,
the specific degree–degree correlations as embodied by W(�k, �k′), leads to a reduction of the
entropy by an amount proportional to the mutual information of in-out degrees of connected
nodes. An analogous result was derived in [1] for nondirected graphs. It can immediately be
seen that if the in-out degrees of connected nodes are statistically independent, then the final
nonvanishing term of 3.9 will be zero. Hence the entropy of the ensemble will in that case be
the same as though the only constraint was the degree distribution.

4. Quantifying structural distance between networks

4.1. Derivation of the distance formula

In this section we define and calculate an information theoretic distance between two directed
networks A and B, with in-out degree distributions pA(�k) and pB(�k) and with degree–degree
correlation functions WA(�k, �k′) and WB(�k, �k′). We generalize to the present context of directed
graphs the choice made in [1], viz. the Jeffreys divergence (i.e. symmetrized Kullback–Leibler
distance) per node of the two associated ensembles from our family (3.1):

DAB = 1

2N

∑
c

{
p(c|pA,QA) log

[
p(c|pA,QA)

p(c|pB,QB)

]

+ p(c|pB,QB) log

[
p(c|pB,QB)

p(c|pA,QA)

]}
(4.1)

DAB is non-negative and equals zero only when both networks A and B belong to the same
tailored graph ensemble (i.e. have equivalent constraints). Upon writing the Shannon entropies
per node of the ensembles A and B as SA and SB, we have

DAB = 1
2 (SAB + SBA − SAA − SBB) (4.2)

7
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where, using the abbreviation (3.5),

SAB = − 1

N

∑
c

p(c|pA,QA) log p(c|pB,QB)

= −
∑

c

p(c|pA,QA)�(c|pB,QB) (4.3)

with �(c|p,Q) as defined in (3.5). We may now use result (A.23) of appendix A, but in doing
so it is vital to keep track carefully of the labels (A,B) of the degree distributions and kernels.
In particular, according to (4.3) we must make in (A.23) the substitutions p(�k|c) → pA(�k),
W(�k, �k′|c) → WA(�k, �k′), p(�k) → pB(�k), and Q(�k, �k′|p̃) → QB(�k, �k′|pA). This leads us to

lim
N→∞

SAB = −
∑

�k
pA(�k) log pB(�k) − k̄A

[
1 + log

(
kA

N

)]
−
∑

�k
pA(�k) log(kin!kout!)

+
∑

�k
pA(�k)kin log

[
pA(�k)kin

R(�k|pA,QB)

]
+
∑

�k
pA(�k)kout log

[
pA(�k)kout

S(�k|pA,QB)

]

− k̄A

∑
�k,�k′

WA(�k, �k′) log QB(�k, �k′|pA) (4.4)

in which R(�k|pA,QB) and S(�k|pA,QB) are to be solved from

R(�k) = pA(�k)kin

kA

∑
�k′QB(�k, �k′|pA)S(�k′)

, S(�k) = pA(�k)kout

kA

∑
�k′QB(�k′, �k|pA)R(�k′)

. (4.5)

Hence, upon assembling and combining the various terms in (4.2) and upon using relations
such as (A.9, A.10) and (B.3) to simplify the result, we find

DAB = 1

2

∑
�k

pA(�k) log

[
pA(�k)

pB(�k)

]
+

1

2

∑
�k

pB(�k) log

[
pB(�k)

pA(�k)

]

+
1

2
k̄A

∑
�k,�k′

WA(�k, �k′) log

[
WA(�k, �k′)

R(�k|pA,QB)QB(�k, �k′|pA)S(�k′|pA,QB)

]

+
1

2
k̄B

∑
�k,�k′

WB(�k, �k′) log

[
WB(�k, �k′)

R(�k|pB,QA)QA(�k, �k′|pB)S(�k′|pB,QA)

]
. (4.6)

According to (B.3), the product WAB(�k, �k′) = R(�k|pA,QB)QB(�k, �k′|pA)S(�k′|pA,QB)

equals the joint distribution of in- and out- degrees of connected nodes in an
ensemble of the family (3.1) that would have been obtained upon choosing the hybrid
combination {pA,QB} of degree distribution and wiring kernel, where QB is normalized

8
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according to
∑

�k,�k′ pA(�k)pA(�k′)QB(�k, �k′|pA) = 1. Similarly, the product WBA(�k, �k′) =
R(�k|pB,QA)QA(�k, �k′|pB)S(�k′|pB,QA) would have been obtained for the ensemble
{pB,QA}. Thus we may write

lim
N→∞

DAB = 1

2

∑
�k

pA(�k) log

[
pA(�k)

pB(�k)

]
+

1

2

∑
�k

pB(�k) log

[
pB(�k)

pA(�k)

]

+
1

2
k̄A

∑
�k,�k′

WA(�k, �k′) log

[
WA(�k, �k′)

WAB(�k, �k′)

]

+
1

2
k̄B

∑
�k,�k′

WB(�k, �k′) log

[
WB(�k, �k′)

WBA(�k, �k′)

]
. (4.7)

This appealing formula shows that DAB � 0 for all choices of (A,B), with equality if and
only if WA = WB ; in the later case one automatically will have WAB = WBA = WA = WB .
In the case where degree–degree correlations are absent from both networks one will find
WAB(�k, �k′) = WA(�k, �k′) = W1A(�k)W2A(�k′), and formula (4.7) reduces to the Jeffreys
divergence between the degree distributions pA and pB.

4.2. Practical form of the distance formula

In contrast to WA and WB, which correspond to the two given networks cA and cB , we cannot
measure WAB and WBA; the later would correspond to hypothetical hybrid networks. Hence in
order to use (4.7) in practice it will be convenient to write it in an alternative form:

lim
N→∞

DAB = 1

2

∑
�k

pA(�k) log

[
pA(�k)

pB(�k)

]
+

1

2

∑
�k

pB(�k) log

[
pB(�k)

pA(�k)

]

+
1

2
k̄A

∑
�k,�k′

WA(�k, �k′) log

[
WA(�k, �k′)

WB(�k, �k′)

]
+

1

2
k̄B

∑
�k,�k′

WB(�k, �k′) log

[
WB(�k, �k′)

WA(�k, �k′)

]

+
1

2
k̄A

∑
�k,�k′

WA(�k, �k′) log

[
WB(�k, �k′)

R(�k|pA,QB)QB(�k, �k′|pA)S(�k′|pA,QB)

]

+
1

2
k̄B

∑
�k,�k′

WB(�k, �k′) log

[
WA(�k, �k′)

R(�k|pB,QA)QA(�k, �k′|pB)S(�k′|pB,QA)

]
. (4.8)

If we choose QA and QB to be the canonical kernels for the two ensembles A and B, i.e.
QA(�k, �k′|p̄) = WA(�k, �k′)/p̄(�k)p̄(�k′) and QB(�k, �k′|p̄) = WB(�k, �k′)/p̄(�k)p̄(�k′), expression
(4.8) simplifies to

lim
N→∞

DAB = 1

2

∑
�k

pA(�k) log

[
pA(�k)

pB(�k)

]
+

1

2

∑
�k

pB(�k) log

[
pB(�k)

pA(�k)

]

+
1

2
k̄A

∑
�k,�k′

WA(�k, �k′) log

[
WA(�k, �k′)

WB(�k, �k′)

]
+

1

2
k̄B

∑
�k,�k′

WB(�k, �k′) log

[
WB(�k, �k′)

WA(�k, �k′)

]

9
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+
1

2
k̄A

⎧⎨
⎩
∑

�k
W1A(�k) log

[
pA(�k)

R(�k|pA,QB)

]
+
∑
�k′

W2A(�k′) log

[
pA(�k′)

S(�k′|pA,QB)

]⎫⎬
⎭

+
1

2
k̄B

⎧⎨
⎩
∑

�k
W1B(�k) log

[
pB(�k)

R(�k|pB,QA)

]
+
∑
�k′

W2B(�k′) log

[
pB(�k′)

S(�k′|pB,QA)

]⎫⎬
⎭

(4.9)

with R(�k|pA,QB) and S(�k|pA,QB) to be solved from

R(�k)/pA(�k) = W1A(�k)∑
�k′WB(�k, �k′)[S(�k′)/pA(�k′)]

, (4.10)

S(�k)/pA(�k′) = W2A(�k)∑
�k′WB(�k′, �k)[R(�k′)/pA(�k′)]

. (4.11)

Next we rewrite the arguments of the logarithms in the second line of (4.8) in terms of
the two degree correlation ratios A(�k, �k′) = WA(�k, �k′)/W1A(�k)W2A(�k′) and B(�k, �k′) =
WB(�k, �k′)/W1B(�k)W2B(�k′). We also transform the order parameters R(�k|pA,QB) and
S(�k|pA,QB) to new functions ρAB(�k) and σAB(�k) via

ρAB(�k) = pA(�k)W1A(�k)

R(�k|pA,QB)W1B(�k)
, σAB(�k) = pA(�k)W2A(�k)

S(�k|pA,QB)W2B(�k)
. (4.12)

Our distance then becomes

lim
N→∞

DAB = 1

2

∑
�k

pA(�k) log

[
pA(�k)

pB(�k)

]
+

1

2

∑
�k

pB(�k) log

[
pB(�k)

pA(�k)

]

+
1

2
k̄A

∑
�k,�k′

WA(�k, �k′) log

[
A(�k, �k′)

B(�k, �k′)

]
+

1

2
k̄B

∑
�k,�k′

WB(�k, �k′) log

[
B(�k, �k′)

A(�k, �k′)

]

+
1

2
k̄A

∑
�k

W1A(�k) log ρAB(�k) +
1

2
k̄A

∑
�k

W2A(�k) log σAB(�k)

+
1

2
k̄B

∑
�k

W1B(�k) log ρBA(�k) +
1

2
k̄B

∑
�k

W2B(�k) log σBA(�k) (4.13)

in which ρAB(�k) and σAB(�k) are to be solved from

ρAB(�k) =
∑
�k′

B(�k, �k′)W2A(�k′)σ−1
AB(�k′) (4.14)

σAB(�k) =
∑
�k′

B(�k′, �k)W1A(�k′)ρ−1
AB(�k′). (4.15)

Whenever pA = pB or A = B (or both), the solution of (4.14, 4.15) will be
ρAB(�k) = σAB(�k) = 1 for all �k. Hence the last two lines of (4.13) represent corrections to
the distance formula, that reflect interference between the constraints imposed by prescribed
degree statistics and those imposed by presecribed degree correlations5.

5 A similar interference term was erroneously omitted from [1], which can be confirmed by retracing the above
arguments and the calculations in appendix A for nondirected graphs. We will summarize and compare our results
for directed and nondirected graphs below.

10



J. Phys. A: Math. Theor. 44 (2011) 275002 E S Roberts et al

We note, finally, that although definition (4.1) requires that the networks A and B have the
same number of nodes, the final form (4.13) of our formula does not depend on the (relative)
network sizes. Hence we will apply the result (4.1) also to networks of different sizes, provided
both are sufficiently large, which makes (4.1) more widely applicable to real networks (which
will in general be large, but of different sizes).

5. Tests, comparisons, and applications

5.1. Simple special cases

If the in-degrees are statistically independent of the out-degrees, i.e. p(�k) = p(kin)p(kout), the
entropy per node (2.19) of the ensemble (2.1) with prescribed degree statistics but no degree
correlations simplifies to

S = k̄

[
log

(
N

k̄

)
+1

]
−
∑
kin

p(kin) log

[
p(kin)

πk̄(k
in)

]
−
∑
kout

p(kout) log

[
p(kout)

πk̄(k
out)

]
+ ζN (5.1)

with limN→∞ ζN = 0. This, according to [1], is the sum of the individual entropies of the
‘out-graph’ ensemble and the ‘in-graph’ ensemble, calculated as though they were considered
as two separate undirected networks. In ensembles with degree correlations, i.e. (3.1), with
entropy per node (3.9), the additional term that represents the entropy reduction imposed by
the degree correlations does not simplify as a result of assuming p(�k) = p(kin)p(kout); the
degree correlations can generate statistical relations between in- and out-degrees that are not
visible in p(�k).

A regular directed graph is one where each node has the same in- and the same out-degree.
Since for a well-defined directed graph, we also have

∑
�k p(�k)kin = ∑

�k p(�k)kout = k,
any regular directed graph must have p(�k) = δ�k,(k,k). This, in turn, implies also that

W(�k, �k′) = δ�k,(k,k)δ�k′,(k,k). So it is impossible to have degree correlations, and both equation
(2.19) and (3.9) reduce to

S = k̄[log(Nk̄) − 1] − 2 log(k̄!) + ζN . (5.2)

5.2. Comparison of formulae for undirected versus directed networks

It is instructive to give an overview of the similarities and differences between directed and
nondirected graphs. Instead of entropies per node, we will also compare entropic results in
terms of complexities. The degree complexity per node Cdeg of a graph c is the difference
between the entropy per node of the associated ensemble (2.1) and the value S0[k̄] that
is found for the entropy per node if only the average connectivity k̄ is prescribed (i.e. for
an ensemble with Poisson distributed degrees). The wiring complexity Cwir is the further
entropy reduction that results if we go from the ensemble (2.1) to the ensemble (3.1) where
also the degree–degree correlations are imposed. Our results can then be summarized as in
table 1.

Similarly we can compare the formulae for the information-theoretic distance DAB

between two networks cA and cB , for directed versus nondirected ones. This gives in
both cases limN→∞ DAB = D

deg
AB + Dwir

AB + Dint
AB , where D

deg
AB is the direct contribution

from degree distribution dissimilarity, Dwir
AB is the direct contribution from degree-correlation

dissimilarity, and Dint
AB accounts for the interference between degree statistics and the possible

degree correlations that could be achieved. Our distance results can then be summarized in
table 2.
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Table 1. Comparison of entropies and complexities of directed versus nondirected graphs. The
entropy per node is given by S[p,W ] = S0[k̄] − Cdeg[p] − Cwir[p,W ], modulo finite size
corrections. For ensembles in which only the average connectivity k̄ is prescribed one would
find the value S0[k̄]. The quantities Cdeg[p] and Cwir[p,W ] measure the entropy reductions caused
by subsequently imposing a degree distribution p, and the joint distribution W of connected nodes,
and can therefore be identified with the degree complexity and the wiring complexity of the
typical graphs in our ensembles. In directed graphs �k = (kin, kout), where kin

i (c) = ∑
j cij and

kout
i (c) = ∑

j cji , and W(�k, �k′) = (Nk̄)−1 ∑
ij cij δ�k,�ki

δ�k′,�kj
. In nondirected graphs one has only

ki(c) = ∑
j cij , and W(k, k′) = (Nk̄)−1 ∑

ij cij δk,ki
δk′,kj

.

directed graphs nondirected graphs

S0[k̄] : k̄[log(N/k̄) + 1] 1
2 k̄[log(N/k̄) + 1]

Cdeg[p] :
∑

�k p(�k) log
[

p(�k)

πk̄ (kin)πk̄ (kout)

] ∑
k p(k) log

[
p(k)

πk̄ (k)

]
Cwir[p,W ] : k̄

∑
�k,�k′ W(�k, �k′) log

[
W(�k,�k′)

W1(�k)W2(�k′)

]
1
2 k̄
∑

k,k′ W(k, k′) log
[

W(k,k′)
W(k)W(k′)

]

Table 2. Comparison of the contributions to the distance limN→∞ DAB = D
deg
AB + Dwir

AB + Dint
AB ,

between graphs cA and cB . Notation conventions are mostly as in the caption of table 1. The
degree correlation ratios  are defined as (�k, �k′) = W(�k, �k′)/W1(�k)W2(�k′) (for directed graphs)
and (k, k′) = W(�k, �k′)/W(k)W(k′) (for nondirected graphs). The functions ρAB(�k) and σAB(�k)

(for directed graphs) are the solutions of equations (4.14, 4.15). The functions ρAB(k) (for
nondirected graphs) are to be solved from equation (5.3).

directed graphs nondirected graphs

D
deg
AB : 1

2

∑
�k pA(�k) log

[
pA(�k)

pB (�k)

]
1
2

∑
k pA(k) log

[
pA(k)

pB (k)

]
+ 1

2

∑
�k pB(�k) log

[
pB(�k)

pA(�k)

]
+ 1

2

∑
k pB(k) log

[
pB(k)

pA(k)

]
Dwir

AB : 1
2 k̄A

∑
�k,�k′ WA(�k, �k′) log

[
A(�k,�k′)
B(�k,�k′)

]
1
4 k̄A

∑
k,k′ WA(k, k′) log

[
A(k,k′)
B(k,k′)

]
+ 1

2 k̄B

∑
�k,�k′ WB(�k, �k′) log

[
B(�k,�k′)
A(�k,�k′)

]
+ 1

4 k̄B

∑
k,k′ WB(k, k′) log

[
B(k,k′)
A(k,k′)

]
Dint

AB : 1
2 k̄A

∑
�k,�k′ WA(�k, �k′) log[ρAB(�k)σAB(�k′)] 1

2 k̄A

∑
k WA(k) log ρAB(k)

+ 1
2 k̄B

∑
�k,�k′ WB(�k, �k′) log[ρBA(�k)σBA(�k′)] + 1

2 k̄B

∑
k WB(k) log ρBA(k)

The functions ρAB(�k) and σAB(�k) are solved from (4.14, 4.15). Repeating the calculation
for nondirected graphs shows that there only one function ρAB(k) is required (or equivalently,
ρAB = σAB), which is the solution of

ρAB(k) =
∑
k′

B(k, k′)WA(k′)ρ−1
AB(k′). (5.3)

5.3. Application to gene regulation networks

A gene regulation network can be viewed as a directed graph, where the nodes represent genes
and the arcs indicate whether (cij = 1) or not (cij = 0) the protein synthesized from gene j

acts as a regulator of gene i. In the present binary set-up, where cij ∈ {0, 1}, one disregards
information on the nature of regulation, i.e. whether it involves repression or activation.

In tables 3 and 4, we show the results of calculating the various contributions to the entropy
of the ensemble associated with the networks of [9] and [10], respectively. Imposing only
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Table 3. The tailoring of random graph ensembles by imposing as constraints the values of
increasingly prescriptive macroscopic topological features measured in the gene regulation network
of [9]. This tailoring reduces the entropy per node S in the ensemble in stages, and thereby the
effective number of graphs N = exp[NS] compatible with the network of [9]. We observe that, in
this example, refining the tailoring of the graph ensemble from imposing only the correct average
degree to imposing the correct degree distribution is more significant than the further refinement
of imposing the correct degree–degree correlations. Hence the degree complexity of this network
is significantly larger than the wiring complexity.

Imposed topological property Entropy per node Entropy per arc

Gene regulation network of Hughes et al (2000)
average degree k̄ 44.5 7.9

degree distribution p(�k) 19.5 3.5

degree–degree correlations (�k, �k′) 17.9 3.2

Table 4. The tailoring of random graph ensembles by imposing as constraints the values of
increasingly prescriptive macroscopic topological features measured in the gene regulation network
of [10]. The tailoring reduces the entropy per node S in the ensemble in stages, and thereby the
effective number of graphs N = exp[NS] compatible with the network of [10]. As in the previous
example, refining the tailoring of the graph ensemble from imposing only the correct average
degree to imposing the correct degree distribution is more significant than the further refinement
of imposing the correct degree–degree correlations. Hence the degree complexity of this network
is again significantly larger than the wiring complexity.

Imposed topological property Entropy per node Entropy per arc

Gene regulation network of Harbison et al (2004)
average degree k̄ 23.2 8.2

degree distribution p(�k) 12.8 4.5

degree–degree correlations (�k, �k′) 11.6 4.1

the correct average degree gives the entropy S0[k̄]. Imposing in addition the correct degree
distribution (i.e. representing the network by ensemble (2.1)) gives the entropy S0[k̄]−Cdeg[p].
Imposing additionally the correct degree–degree correlations (i.e. representing the network by
ensemble (3.1)) reduces the entropy still further to S0[k̄] − Cdeg[p] − Cwir[p,W ].

In both tables we also show the entropies per arc, defined as S ′ = S/k̄. The latter are
normalised for the average degree. This fits in with the ‘arc centric’ view that the calculations
in this paper and its predecessor [1] seem to have steered us in, where the final answers are
consistently found to be most elegantly formulated in terms of the joint distribution W of
degrees at either end of an arc.

In [9] Hughes et al used a two-color cDNA micro-array hybridization assay to generate
expression profiles in yeast for 276 deletion mutants. We followed an approach published by
Rung et al [11] to construct a network from this data. Two genes g1, g2 are connected by an
arc from g1 to g2 if the ratio of the expression level in the mutant where gene g1 is deleted
versus the background standard deviation in the wild-type strain is larger than a threshold. In
this way, we arrived at a directed network with N = 5654 nodes (genes), with an average
degree k̄ ≈ 5.6. The degree distribution of this network is characterised by high frequency of
occurrence of low degree nodes; the set of nodes with out-degree zero and in-degree less than
4 covers more than 50% of the set. However, the network also contains some nodes with very
high out-degree.

The authors of [10], Harbison et al reported on a study of DNA binding transcriptional
regulators in yeast. For each of the 203 transcription factors tested they report the genes where
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the transcription factor bound to the putative promoter region. Similar to a previous study
[12] we constructed a network by connecting gene g1, which encodes a transcription factor,
to gene g2 if the measurements were statistically significant (P � 0.001). Their data were
represented as a directed network of N = 3865 nodes, with an average degree of k̄ ≈ 2.81.
Compared with the data of [9], the network of [10] is more sparse. It does, however, show a
similar degree distribution pattern — in fact over 50% of the nodes have zero out-degree and
an in-degree of less than 2.

In practice, when the gene network data are collected, a decision has to be made about
the cut-off point where the effect of one gene product on another gene is so small as to be
considered insignificant. If there was no threshold and every small fluctuation was taken to
be evidence of co-regulation, then it would appear that every gene regulated every other gene,
and the network would be complete. Conversely, setting too strict a threshold will risk missing
out on important but subtle interactions.

Changing the threshold would reduce the number of arcs, and hence make the network
more sparse with lower average degree. Our base assumption would be that beyond that, the
main qualitative features of the topology would be maintained. That is, the stricter threshold
would remove arcs indiscriminately across the network. However, it is possible that, for
example, a node would appear to be a ‘hub’ under a lenient criterion, but would lose a large
number of interactions under stricter criteria, so that it is no longer a hub: this would be
a qualitative change to the topology arising from the change in thresholds. The analysis
proposed in this paper is measuring the topological properties of the network (rather than the
network itself). We would expect these results to vary insofar as the topological properties
varied. Figure 1 shows the results of repeating the analysis above for different values of the
thresholds.

The above data all refer to the same organism, yeast; however, they present different
aspects of gene interactions. Hence, even more than for protein–protein interaction networks,
comparison must be done cautiously. The heterogeneity in the data sets emphasises the
importance of developing a suite of tools and measures that can be used to study each network
independently.

6. Discussion

In this paper we have derived several mathematical results for directed random graph ensembles
tailored to match chosen properties of real-world networks. We have calculated the Shannon
entropy of ensembles constrained by a prescribed degree distribution, and of ensembles
constrained by a prescribed degree–degree correlation function (which contains more detailed
topological information than the degree distribution). We have also defined a rational
information-theoretic distance measurement for comparing networks based on their degree
distribution and degree–degree correlation. All this complements and generalises earlier work
done in [1] for nondirected networks. We also identified a correction term to the distance
measure of nondirected graphs which was absent in [1]. A summary of our results and how
they compare with the corresponding formula for nondirected networks is presented in tables 1
and 2.

Our growing suite of quantitative tools can be used to study the properties of large real
world networks. These tools are precise in leading order in N, and take the form of explicit
and transparent formulae which use easily measurable macroscopic parameters as input. The
present generalization to nondirected networks enables their application to gene regulation
networks. We trust that the benefits of having explicit formulae for network complexities
and information-theoretic dissimilarity measures will increase, especially in bioinformatics,
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Figure 1. Each bar on the chart represents a different choice of threshold. Moving from left to
right, the threshold is made progressively stricter so as to exclude approximately 3 percent of arcs
at each step. The left half refers to Harbison et al [10] data; the right half refers to Hughes et al
[9] data. Within a bar, the top line presents the entropy per bond when the constraint is ‘average
degree’; the next line shows the entropy per bond when the constraint is additionally ‘degree
distribution’; and, the final line gives the entropy per bond for the ensemble additionally targeting
the ‘degree–degree correlation’. Hence the top two shaded areas represent the degree complexity
and the wiring complexity, respectively. Both datasets are plotted on the same axis in order to
illustrate that, although there is some movement with different thresholds, the results for the two
different networks remain distinct and distinguishable for any reasonable choice of threshold, and
are not unduly sensitive to any reasonable choice of threshold.

as we gain experience with using and interpreting the method, and as we increase the range of
topological properties to which we can tailor our graph ensembles.

The focus of our future work will be to increase the number of topological properties that
we can characterise, measure, and impose upon tailored random graph ensembles. Significant
progress has already been made towards including distributions of so-called generalised
degrees, but our priority will be to focus on observables that measure the statistics of short
loops. In the presence of such loops the methods and ideas that we applied so far will no
longer suffice. However, short loops appear to be key biological motifs, so progress in this
direction should yield substantial benefits in terms of applicability of the method in biological
signalling.

Appendix A. Order parameter representation of the graph probabilities

In this section we derive a tool that is repeatedly used in this paper, being a formula in terms
of simple observables and order parameters of the log-probability per node of graphs (3.5)
given the ensemble definition (3.1), in leading orders in N. Upon substituting (3.1) into this
formula, and after some simple manipulations and use of the law of large numbers, one finds

�(c|p,Q) =
∑

�k
p(�k|c) log p(�k) + φ1(c|Q) − φ2(c|Q) + εN (A.1)
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φ1(c|Q) = 1

N
log w(c|�k1, . . . , �kN,Q)

∣∣∣�ki=�ki (c)∀i
(A.2)

φ2(c|Q) = 1

N
log Z(�k1, . . . , �kN,Q)

∣∣∣�ki=�ki (c)∀i
(A.3)

with εN → 0 as N → ∞, and

Z(�k1, . . . , �kN,Q) =
∑

c

w(c|�k1, . . . , �kN,Q)
∏

i

δ�ki ,�ki (c) (A.4)

w(c|�k1, . . . , �kN,Q) =
∏
i 	=j

[
k

N
Q(�ki, �kj |p̄)δcij ,1+

(
1− k

N
Q(�ki, �kj |p̄)

)
δcij ,0

]
. (A.5)

In these expressions k = N−1 ∑
i k

in
i = N−1 ∑

i k
out
i , p̄(�k) = N−1 ∑

i δ�k,�ki
, and the kernel

Q(., .) is normalized locally according to
∑

�k,�k′ p̄(�k)p̄( �k′)Q(�k, �k′|p̄) = 1.

A.1. Calculation of φ1

The first contribution (A.2) to the entropy is calculated easily:

φ1(c|Q) = 1

N

∑
i 	=j

{
cij log

[
k

N
Q(�ki, �kj |p̄)

]
− k

N
Q(�ki, �kj |p̄)

} ∣∣�ki=�ki (c) ∀i
+ O

(
1

N

)

= k̄(c)

⎧⎨
⎩log

[
k(c)

N

]
−1+

∑
�k,�k′

W(�k, �k′|c) log Q(�k, �k′|p(.|c))

⎫⎬
⎭+ O

(
1

N

)
. (A.6)

It involves the in- and out-degree distribution p(�k|c), its degree average k̄(c), and the joint
distribution W(�k, �k′|c) of in- and out-degrees of connected nodes. All are calculated for the
graph c and defined as

p(�k|c) = 1

N

∑
i

δ�k,�k(c) (A.7)

W(�k, �k′|c) = 1

Nk̄(c)

∑
ij

cij δ�k,�ki (c)δ�k′,�kj (c). (A.8)

They are related via the two identities

W1(�k|c) =
∑
�k′

W(�k, �k′|c) = kin

k̄(c)
p(�k|c) (A.9)

W2(�k|c) =
∑
�k′

W(�k′, �k|c) = kout

k̄(c)
p(�k|c). (A.10)

The kernel in (A.6) is normalized according to
∑

�k,�k′ p(�k|c)p(�k′|c)Q(�k, �k′|p(.|c)) = 1.
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A.2. Calculation of φ2

In order to calculate (A.3) we first work out the following quantity, which will then have to be
evaluated at (�k1, . . . , �kN) = (�k1(c), . . . , �kN(c)):

φ̃2(�k1, . . . , �kN |Q) = 1

N
log Z(�k1, . . . , �kN,Q)

= 1

N
log

∑
c

∏
i 	=j

[
k

N
Q(�ki, �kj |p̄)δcij ,1+

(
1− k

N
Q(�ki, �kj |p̄)

)
δcij ,0

]

×
∏

i

δ�ki ,�ki (c)

= 1

N
log

∫ π

−π

∏
i

[
dωi dψi

4π2
ei[ωik

in
i +ψik

out
i ]

]
L(ω, ψ|p̄,Q) (A.11)

with

L(ω, ψ|p̄,Q) =
∏
i 	=j

[
1+

k

N
Q(�ki, �kj |p̄)[e−i(ωi+ψj )−1]

]

= exp

⎡
⎣k

N

∑
ij

Q(�ki, �kj |p̄)[e−i(ωi+ψj )−1]+O(N0)

⎤
⎦ . (A.12)

Upon introducing R(�k|ω) = N−1 ∑
i δ�k,�ki

e−iωi and S(�k|ψ) = N−1 ∑
i δ�k,�ki

e−iψi , and inserting∫∏
�k
[
dR(�k) dS(�k)δ[R(�k)−R(�k|ω)]δ[S(�k)−S(�k|ψ)]

]
with δ-functions written in integral form,

we can write

L(ω, ψ|p̄,Q) =
∫ ∏

�k

[
dR(�k) dR̂(�k) dS(�k) dŜ(�k)

4π2/N2
eiN[R̂(�k)R(�k)+Ŝ(�k)S(�k)]

]
eO(N0)

× e−i
∑

i [R̂(�ki ) e−iωi +Ŝ(�ki ) e−iψi ]+kN
∑

�k,�k′ R(�k)Q(�k,�k′|p̄)S(�k′)−kN . (A.13)

Substituting this back into φ̃2, and using the law of large numbers, then gives

φ̃2(. . .) = 1

N
log

∫ ∏
�k

[dR(�k) dR̂(�k) dS(�k) dŜ(�k)]eN
[R,R̂,S,Ŝ|p̄,Q]+O(log N) (A.14)

where


[R, R̂, S, Ŝ|p̄,Q] = i
∑

�k
[R̂(�k)R(�k)+Ŝ(�k)S(�k)] + k

∑
�k,�k′

R(�k)Q(�k, �k′|p̄)S(�k′) − k

+
∑

�k
p̄(�k)

{
log

∫ π

−π

dω

2π
ei[ωkin−R̂(�k)e−iω] + log

∫ π

−π

dψ

2π
ei[ψkout−Ŝ(�k)e−iψ ]

}
. (A.15)

After doing the remaining integrals over ω and ψ we get


[R, R̂, S, Ŝ|p̄,Q] = i
∑

�k
[R̂(�k)R(�k)+Ŝ(�k)S(�k)] + k

∑
�k,�k′

R(�k)Q(�k, �k′|p̄)S(�k′) − k

+
∑

�k
p̄(�k)kin log[−iR̂(�k)] +

∑
�k

p̄(�k)kout log[−iŜ(�k)]

−
∑

�k
p̄(�k) log(kin!kout!) (A.16)
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For N → ∞ the quantity φ̃2(�k1, . . . , �kN |Q) can be evaluated by steepest descent, giving
limN→∞ φ̃2(. . .) = extrR,R̂,S,Ŝ
[R, R̂, S, Ŝ|p̄,Q]. Differentiation of 
 gives the following
saddle-point equations:

− iR̂(�k) = p̄(�k)kin/R(�k) = k
∑
�k′

Q(�k, �k′|p̄)S(�k′) (A.17)

− iŜ(�k) = p̄(�k)kout/S(�k) = k
∑
�k′

Q(�k′, �k|p̄)R(�k′). (A.18)

At the saddle-point we deduce that
∑

�k,�k′ R(�k)Q(�k, �k′|p̄)S(�k′) = 1, and that


[R, R̂, S, Ŝ|p̄,Q] = −2k̄ −
∑

�k
p̄(�k) log(kin!kout!)

+
∑

�k
p̄(�k)kin log

[
p̄(�k)kin

R(�k|p̄,Q)

]
+
∑

�k
p̄(�k)kout log

[
p̄(�k)kout

S(�k|p̄,Q)

]
(A.19)

in which the functions R(�k|p̄,Q) and S(�k|p̄,Q) are the solutions of

R(�k) = p̄(�k)kin

k
∑

�k′ Q(�k, �k′|p̄)S(�k′)
, S(�k) = p̄(�k)kout

k
∑

�k′ Q(�k′, �k|p̄)R(�k′)
. (A.20)

Finally, the quantity (A.3) we aim to calculate is defined as the value of φ̃2(. . .) upon
substituting (�k1, . . . , �kN) → (�k1(c), . . . , �kN(c)). The only occurrences of the sequence
(�k1, . . . , �kN) in the formula (A.19) are in the values of p̄(�k) and k̄, so we obtain φ2(c|Q) by
making in (A.19) the substitutions p̄(�k) → p(�k|c) and k̄ → k̄(c). We conclude that

φ2(c|Q) = −2k̃ −
∑

�k
p̃(�k) log(kin!kout!)

+
∑

�k
p̃(�k)kin log

[
p̃(�k)kin

R(�k|p̃,Q)

]
+
∑

�k
p̃(�k)kout log

[
p̃(�k)kout

S(�k|p̃,Q)

]
(A.21)

in which p̃(�k) = p(�k|c) and k̃ = k̄(c), and in which R(�k|p̃,Q) and S(�k|p̃,Q) are the
solutions of

R(�k) = p̃(�k)kin

k̃
∑

�k′ Q(�k, �k′|p̃)S(�k′)
, S(�k) = p̃(�k)kout

k̃
∑

�k′ Q(�k′, �k|p̃)R(�k′)
. (A.22)

A.3. Final analytical expression for �

The intermediate results (A.6, A.21) can now be substituted back into expression (A.1), which
gives a formula that is seen to depend on c only via W(�k, �k′|c) and p(�k|c):

�(c|p,Q) =
⎧⎨
⎩
∑

�k
p̃(�k) log p(�k) + k̃[1+log[k̃/N]] +

∑
�k

p̃(�k) log(kin!kout!)

−
∑

�k
p̃(�k)kin log

[
p̃(�k)kin

R(�k|p̃,Q)

]
−
∑

�k
p̃(�k)kout log

[
p̃(�k)kout

S(�k|p̃,Q)

]

+ k̃
∑
�k,�k′

W̃ (�k, �k′) log Q(�k, �k′|p̃)

⎫⎬
⎭

W̃ (�k, �k′)=W(�k,�k′|c),p̃(�k)=p(�k|c)

+ εN (A.23)
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with limN→∞ εN = 0, k̃ = ∑
�k kinp̃(�k) = ∑

�k koutp̃(�k), and with the two functions S(�k|p̃,Q)

and R(�k|p̃,Q) to be extracted from (3.7).

Appendix B. Calculation of the kernel W

For large N the kernel W(�k, �k′) = (Nk̄)−1 ∑
ij cij δ�k,�ki

δ�k′,�kj
will be self-averaging in the

ensemble (3.1), i.e. with probability one any graph generated randomly according to (3.1)
will exhibit the same kernel, modulo finite size effects. Thus we may for N → ∞ calculate
W(�k, �k′) as an average over the ensemble (3.1):

W(�k, �k′) = 1

Nk̄

∑
r 	=s

∑
�k1...�kN

δ�k,�kr
δ�k′,�ks

∏
i p(�ki)

Z(�k1 . . . �kN,Q)

∑
c

[∏
i

δ�ki ,�ki (c)

]
crs

×
∏
i 	=j

[
k

N
Q(�ki, �kj |p)δcij ,1+

(
1− k

N
Q(�ki, �kj |p)

)
δcij ,0

]

= 1

N2

∑
r 	=s

∑
�k1...�kN

δ�k,�kr
δ�k′,�ks

∏
i p(�ki)

Z(�k1 . . . �kN,Q)

∫ π

−π

∏
i

[
dωi dψi

4π2
ei[ωik

in
i +ψik

out
i ]

]

× Q(�kr , �ks |p)[e−i(ωr +ψs)

[
1+O

(
1

N

)]

×
∏
i 	=j

[
1+

k

N
Q(�ki, �kj |p)[e−i(ωi+ψj )−1]

]

= Q(�k, �k′|p)
∑

�k1...�kN

∏
i p(�ki)

Z(�k1 . . . �kN,Q)

∫ π

−π

∏
i

[
dωi dψi

4π2
ei[ωik

in
i +ψik

out
i ]

]

× L(ω, ψ|p,Q)

(
1

N

∑
r

δ�k,�kr
e−iωr

)( 1

N

∑
s

δ�k′,�ks
e−iψs

) [
1+O

(
1

N

)]

= Q(�k, �k′|p)
∑

�k1...�kN

[1+O
(

1
N

)
]
∏

i p(�ki)

Z(�k1 . . . �kN,Q)

∫ ∏
�q

[
dR(�q) dR̂(�q) dS(�q) dŜ(�q)

4π2/N2

]

× eiN
∑

�q [R̂(�q)R(�q)+Ŝ(�q)S(�q)]+kN
∑

�q,�q′ Q(�q,�q ′ |p)R(�q)S(�q ′)−kN+O(N0)

× R(�k)S(�k′)
∏

i

∫ π

−π

[
dω dψ

4π2
eiωkin

i +iψkout
i −iR̂(�ki )e−iω−iŜ(�ki )e−iψ

]
. (B.1)

We now write Z(�k1 . . . �kN,Q) also as an integral over order parameters, as in our earlier
derivation of (A.19), but noting that now the relevant degree distribution is that of our ensemble
(3.1), i.e. p(�k) instead of p̄(�k). This gives

W(�k, �k′) =
[

1+O
(

1

N

)]
Q(�k, �k′)

∑
�k1...�kN

∏
i

p(�ki)

×
∫∏

�q dR(�q) dR̂(�q) dS(�q) dŜ(�q) eN
[R,R̂,S,Ŝ|p,Q]+O(log N)R(�k)S( �k′)∫∏
�q dR(�q)dR̂(�q) dS(�q) dŜ(�q) eN
[R,R̂,S,Ŝ|p,Q]+O(log N)

, (B.2)

where the non-extensive terms in the exponentials of numerator and denominator are fully
identical, and with 
 as defined in (A.15), modulo the replacement p̄ → p. The summation
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over degree sequences has now become obsolete, and for N → ∞ we obtain

lim
N→∞

W(�k, �k′) = R(�k|p,Q)Q(�k, �k′|p)S(�k′|p,Q) (B.3)

in which R(�k|p,Q) and S(�k|p,Q) are to be solved from

R(�k) = p(�k)kin

k
∑

�k′ Q(�k, �k′|p)S(�k′)
, S(�k) = p(�k)kout

k
∑

�k′ Q(�k′, �k|p)R(�k′)
(B.4)

with the average degree of our ensemble, k̄ = ∑
�k kinp(�k) = ∑

�k koutp(�k).
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