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Randomizing networks using a naive “accept-all” edge-swap algorithm is generally biased. Building on recent
results for nondirected graphs, we construct an ergodic detailed balance Markov chain with nontrivial acceptance
probabilities for directed graphs, which converges to a strictly uniform measure and is based on edge swaps that
conserve all in and out degrees. The acceptance probabilities can also be generalized to define Markov chains
that target any alternative desired measure on the space of directed graphs in order to generate graphs with
more sophisticated topological features. This is demonstrated by defining a process tailored to the production of
directed graphs with specified degree-degree correlation functions. The theory is implemented numerically and
tested on synthetic and biological network examples.
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I. INTRODUCTION

When seeking to assess the statistical relevance of observa-
tions made in real networks, there are three routes available.
One could generate null-model networks for hypothesis testing
from scratch, constrained by the values of observed parameters
in the real network (e.g., using the Molloy-Reed stub-joining
method [1] or the Barabási-Albert preferential attachment
model [2]). Alternatively, one could generate null-model net-
works by randomizing the original network, using dynamical
rules that leave the values of relevant parameters invariant [3].
The final option is to use analytical methods to find ensemble
averages for the observable of interest; see, e.g., [4–7].

The null-model approach is appealing in its conceptual
simplicity. It effectively provides synthetic “data”, which can
be analyzed in the same way as the real data set. One can then
learn which observed properties are particular to the real data
set and which are common within the ensemble.

Applications of network null models are wide ranging and
central to network science. Reference [8] applies null models
to identify over-represented “motifs” in the transcriptional
regulation network of E. coli. Reference [9] discusses adapting
the Watts-Strogartz method to generating random networks
to model power grids. Reference [10] explores motifs found
within an interfirm network. Reference [11] uses network null
models to study social networks. Reference [12] compares
topological properties of interaction and transcription regula-
tory networks in yeast with randomized null-model networks
and postulates that links between highly connected proteins
are suppressed in protein interaction networks. Reference [13]
discusses the challenges of specifying a suitable matrix null
model in the field of ecology.

It is crucial that the synthetic networks generated as
null models are representative of the underlying ensembles.
Any inadvertent bias in the network generation process may
invalidate the hypothesis test. It is therefore worrying that
the two most popular methods to randomize or generate null
networks are in fact known to be biased. That is, the processes
do not reach every valid network in the ensemble with equal
probability. The common implementation of the stub-joining
method, where invalid edges are rejected but the process

subsequently continues (as opposed to starting from the
beginning), is known to be biased [14–16]. Even if upon invalid
edge rejection the stub-joining process is restarted, it is not
clear whether the graphs produced would be unbiased (we are
not aware of any published proof). Reference [7] proposes
a version of the stub-joining algorithm with an analytical
correction to network observables. Similarly, the conventional
accept-all edge-swap process (see, e.g., [17]) is also known to
be biased [18]: graphs on which many swaps can be executed
are generated more often. The effects of these biases may
in the past not always have been serious [19], but using
biased algorithms for producing null models is fundamentally
unsound, and unacceptable when there are rigorous unbiased
alternatives [18].

In this paper, we build on the work of [18] and [3] and
define a Markov chain Monte Carlo (MCMC) process, based
on ergodic in and out degrees, preserving edge-swap moves
that act on directed networks. We first calculate correct move
acceptance probabilities for the process to sample the space of
all allowed directed graphs uniformly. We then extend the
theory in order for the process to evolve to any desired measure
on the space of directed graphs. Attention is paid to adapting
our results for efficient numerical implementation. We also
identify under which circumstances the error made by doing
accept-all edge swaps is immaterial. We apply our theory to
real and synthetic networks.

II. AN ERGODIC AND UNBIASED RANDOMIZATION
PROCESS WHICH PRESERVES IN AND OUT DEGREES

A. Edge-swap moves

The canonical moves for degree-preserving randomization
of graphs are the so-called edge swaps; see, e.g., [18,20,21].
The undirected version of the edge swap is illustrated in
Fig. 1; a generalization to directed graphs is found in [3].
The authors of [3] define a move—which we will refer to as
a square swap—starting from a set of four entries from the
connectivity matrix c ∈ {0,1}N2

of a directed binary N -node
graph, defined by node pairs {(i1,j1),(i1,j2),(i2,j2),(i2,j1)}
such that the corresponding entries {ci1j1 ,ci1j2 ,ci2j2 ,ci2j1} are
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FIG. 1. (Color online) The undirected edge swap. This is the
canonical choice for the elementary moves of an ergodic degree-
preserving randomization process on undirected networks.

alternately 0 and 1, and not “structural” (i.e., they are allowed
to vary). As for the undirected case, the elementary edge-
swap move is defined by swapping the 0 and 1 entries, i.e.,
{ci1j1 ,ci1j2 ,ci2j2 ,ci2j1} → {1−ci1j1 ,1−ci1j2 ,1−ci2j2 ,1−ci2j1}. It
is built into the definition that a move is not allowed if the pair
of nodes to which an edge is rewired is already connected.
The authors of [3] prove that if self-interactions are permitted,
then the repeated application of such moves can transform any
binary matrix cA to any other binary matrix cB with the same
in and out degree distributions. However, if we require in
addition that the diagonal elements of all c are 0 (i.e., we
forbid self-interactions), then the edge swap defined above
is no longer sufficient to ensure ergodicity. To remedy this
problem, the authors of [3] introduce a further move, which
we will call a triangle swap. This move also gives us the
simplest demonstration of two valid configurations that cannot
be connected by square-type swaps. The square swap and the
triangle swap are illustrated in Fig. 2; in combination these
two moves allow us to transform between any two directed
binary matrices which have the same in and out degrees, even
if self-interactions are forbidden [3].

A stochastic process defined as accepting all randomly se-
lected moves from the above set is ergodic but biased. This was
already observed in [3], where the authors proposed a “switch

FIG. 2. (Color online) The square swap (top) and triangle swap
(bottom). In combination, these two represent the canonical choice for
the elementary moves of an ergodic degree-preserving randomization
process on directed networks without self-interactions.

and hold” algorithm, which involves the number of states
accessible in one move from a configuration (its mobility),
and the maximum possible number of states accessible in one
move from any network in the ensemble (the degrees of a
hypergraph, in the language of later publications). In [18], the
problem was studied for undirected graphs; it was shown how
move acceptance probabilities should be defined to guarantee
stochastic evolution by edge swapping to any desired measure
on the space of nondirected graphs. The analysis in [18] is
quite general, and briefly reproduced in Sec. II B below. Here
we will adapt their calculations to directed graphs and include
the new moves defined by [3]. This will result in a Markovian
process based on edge swapping that will equilibrate to any
desired measure on the space of directed graphs.

B. Outline of the general theory

This section briefly summarizes results of [18] which will
be used in the next section. We define an adjacency matrix
c = {cij }, where cij = 1 if and only if there is a directed link
from node j to node i. We denote the set of all such graphs as
C. The aim is to define and study constrained Markov chains
for the evolution of c in some subspace � ∈ C. This is a
discrete time stochastic process, where the probability pt (c)
of observing a graph c at time t evolves according to

∀c ∈ � : pt+1(c) =
∑
c′∈�

W (c|c′)pt (c′), (1)

where t ∈ IN and W (c|c′) is a transition probability. We require
the process to have three additional properties:

(1) Each elementary move F can only act on a subset of all
possible graphs.

(2) The process converges to the invariant measure

p∞(c) = Z−1e−H (c),

where Z is a normalizing constant and H (c) is called the
Hamiltonian.

(3) Each move F has a unique inverse, which acts on the
same subset of states as F itself.

The second property is the crucial one, in that it defines
the equilibrium probability distribution of c after the Markov
process has equilibrated. For example, aiming for a flat
distribution is equivalent to requiring H (c) to be constant.

We exclude the identity move from the set � of all moves,
and we define an indicator function IF (c) where IF (c) = 1
if and only if the move c → F c is allowed. The transition
probabilities are constructed to obey detailed balance,

∀c,c′ ∈ � : W (c|c′)p∞(c′) = W (c′|c)p∞(c). (2)

At each step, a candidate move F ∈ � is drawn with
probability q(F |c′), where c′ is the current state. The move
is accepted with some probability A(F c′|c′). Our aim is to
define a suitable A(F c′|c′) in a way such that our process will
achieve the desired equilibrium distribution p∞(c).

The relationship between the transition probability and the
probability of drawing and accepting a particular move is
clearly

W (c|c′) =
∑
F∈�

q(F |c′){δc,F c′A(F c′|c′) + δc,c′ [1−A(F c′|c′)]}.

(3)
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Insertion into (2) then leads to the following condition, which
must be satisfied by A(F c′|c′) and q(F |c′):

(∀c ∈ �)(∀F ∈ �) : q(F |c)A(F c|c)e−H (c)

= q(F−1|F c)A(c|F c)e−H (F c). (4)

We define the mobility n(c) to be the number of moves which
can act on each state: n(c) = ∑

F∈� IF (c). If the candidate
moves are drawn randomly with equal probabilities from the
set of all moves allowed to act, then we find that (4) reduces to

A(c|c′) = n(c′)e− 1
2 [H (c)−H (c′)]

n(c′)e− 1
2 [H (c)−H (c′)] + n(c)e

1
2 [H (c)−H (c′)]

. (5)

If we make the simplest choice, H (c) = const, then the above
process will asymptotically sample all graphs with the imposed
degree sequence uniformly. To sample this constrained space
of graphs with alternative nontrivial probabilities p∞(c), we
would choose H (c) = − ln p∞(c) + const.

Equation (4) also shows what would happen if we were to
sample with A(c|c′) ≡ 1 for all (c,c′), i.e., for accept-all edge
swapping: the detailed balance condition would give

(∀c ∈ �)(∀F ∈ �) :
e−H (c)

n(c)
= e−H (F c)

n(F c)
. (6)

For this to be satisfied, we require both sides of the expression
to evaluate to a constant. Hence e−H (c) ∝ n(c), so the naive
process will converge to the nonuniform measure,

p∞(c) = Z−1n(c). (7)

This is the undesirable bias of accept-all edge swapping. It has
a clear intuitive explanation. The mobility n(c) is the number of
allowed moves on network c, which is equal to the number of
inverse moves through which c can be reached in one step from
another member of the ensemble. The likelihood of seeing a
network c upon equilibration of the process is proportional to
the number of entry points that c offers the process.

C. Calculation of the mobilities for directed networks

Since the two types of moves required for ergodic evolution
of directed graphs, viz., the square swap and the triangle swap,
are clearly distinct, the mobility of a graph c is given by n(c) =
n�(c) + n	(c), where n�(c) and n	(c) count the number of
possible moves of each type that can be executed on c.

To find n�(c), we need to calculate how many distinct
link-alternating cycles of length 4 can be chosen in graph c.
We exclude self-interactions, so our cycles must involve four
distinct nodes. The total number of such moves can be written
as

n�(c) = 1

2

∑
ijk�

δ̄jk δ̄�i δ̄ik δ̄j�cij ck�c̄kj c̄i�, (8)

where the prefactor compensates for the symmetry, and
where we used the shorthand c̄kj = 1 − ckj and δ̄jk = 1 − δjk .
Expanding this shorthand in (8) gives, after some further

bookkeeping of terms and with (c†)ij = cji ,

n�(c) = 1

2
Tr(cc†cc†) −

∑
ij

kin
i cij k

out
j + Tr(cc†c) + 1

2
Tr(c2)

+1

2
N2〈k〉2 −

∑
j

kin
j kout

j , (9)

with 〈k〉 = N−1 ∑
i k

in
i = N−1 ∑

i k
out
i . We next repeat the

calculation for the case of the triangle swap. For easier
manipulations, we introduce a new matrix c� of double links,
defined via (c�)ij = cij cji . We then find

n	(c) = 1

3

∑
ijk

δ̄ij δ̄jk δ̄kicij cjkcki c̄j i c̄kj c̄ik

= 1

3
{Tr(c3) − 3Tr(c�c2) + 3Tr(c�2c) + −Tr(c�3)}

= 1

3
Tr[(c − c�)3]. (10)

In combination, (9) and (10) give us an explicit and exact
formula for the graph mobility n(c) = n�(c) + n	(c) and,
hence, via (5), a fully exact MCMC process for generating
random graphs with prescribed sequences and any desired
probability measure in the standard form Z−1 exp[−H (c)].
Since (9) and (10) cannot be written in terms of the degree
sequence only, neglecting the mobility (as with accept-all edge
swapping) would always introduce a bias into the sampling
process.

III. PROPERTIES AND IMPACT OF GRAPH MOBILITY

A. Bounds on the mobility

We will now derive bounds on the sizes of the mobility
terms. This will help us characterize degree distributions for
which the error due to accept-all edge swapping is not expected
to be material.

We first observe that

n	(c) = 1

3

∑
ijk

cij (1 − cji)cjk(1 − ckj )cki(1 − cik) � 1

3
Tr(c3).

Hence, the mobility n(c) = n�(c) + n	(c) obeys

n(c) � 1

2
Tr(cc†cc†) −

∑
ij

kin
i cij k

out
j + Tr(cc†c) + 1

2
Tr(c2)

+1

2
N2〈k〉2 −

∑
j

kin
j kout

j + 1

3
Tr(c3). (11)

We find upper bounds for most of the terms above by applying
the simple inequality cij ckl � 1

2 (cij + ckl), which gives, e.g.,

Tr(cc†c) � N

2
[〈kin2〉 + 〈kout2〉], Tr(c2) � N〈k〉, (12)

Tr(cc†cc†) �
∑
ij

kin
i cij k

out
i , Tr(c3) � N〈kinkout〉. (13)
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An upper bound on
∑

ij kin
i cij k

out
j follows from the observation

that if cij = 1, then certainly kin
i � 1 and kout

j � 1. Hence,

∑
ij

kin
i cij k

out
j � 1

2

∑
ij

[
cij k

out
j + kin

i cij

] = 1

2
N [〈kin2〉+ 〈kout2〉].

(14)

Combining (12)–(14) with (11) then gives

n(c) � N

2

[
N〈k〉2 + 〈k〉 + 1

2
(〈kin2〉 + 〈kout2〉) − 4

3
〈kinkout〉

]
.

(15)

Next we calculate a lower bound for n(c). We use simple
identities such as

Tr(c2) � 0, n	(c) � 0, Tr(cc†c) � 0, (16)

and

Tr(cc†cc†) � 1

2

∑
ijk�

cjicjkc�kc�i(δj� + δik) = N [〈kin2〉+〈kout2〉].

(17)

We now find

n(c) � 1

2
N [〈kin2〉 + 〈kout2〉] + 1

2
N2〈k〉2

−
∑

j

kin
j kout

j −
∑
ij

kin
i cij k

out
j . (18)

We finally need an upper bound for
∑

ij kin
i cij k

out
j , which we

write in terms of kin
max = maxi k

in
i and kout

max = maxi k
out
i :

∑
ij

kin
i cij k

out
j � 1

2

∑
ij

[
kin

maxcij k
out
j + kin

i cij k
out
max

]

= 1

2
N

[
kin

max〈kout2〉 + kout
max〈kin2〉]. (19)

We thus obtain our lower bound for the mobility,

n(c) � N

2

[
N〈k〉2 + 〈(kin − kout)2〉− kin

max〈kout2〉− kout
max〈kin2〉].

(20)

B. Identification of graph types most likely to be biased
by accept-all edge swapping

We know from (5) that unbiased sampling of graphs, i.e.,
p(c) = 1/|�| for all c ∈ �, requires using the following state-
dependent acceptance probabilities in the edge-swap process:

A(c|c′) = [1 + n(c)/n(c′)]−1. (21)

We now investigate under which conditions one will in large
graphs effectively find n(c)/n(c′) → 1 for all c,c′ ∈ �, so
that the sampling bias would be immaterial. Let us define

�n = max
c,c′∈�

|n(c) − n(c′)| = max
c∈�

n(c) − min
c∈�

n(c). (22)

Using the two bounds (15) and (20), we immediately obtain

�n � N

2

[
〈k〉 − 1

2
(〈kin2〉 + 〈kout2〉) + 2

3
〈kinkout〉

+ kin
max〈kout2〉 + kout

max〈kin2〉
]

= N

2

[
〈k〉 − 1

6
(〈kin2〉 + 〈kout2〉) − 1

3
〈(kin − kout)2〉

+ kin
max〈kout2〉 + kout

max〈kin2〉
]

� N

2

[〈k〉 + kin
max〈kout2〉 + kout

max〈kin2〉]. (23)

Clearly, 1 − �n/n(c) � n(c′)/n(c) � 1 + �n/n(c), so in view
of (21), we are interested in the ratio �n/n(c), for which we
find

�n

n(c)
� 〈k〉 + kin

max〈kout2〉 + kout
max〈kin2〉

N〈k〉2 − kin
max〈kout2〉 − kout

max〈kin2〉 . (24)

So we can be confident that the impact of the graph mobility
on the correct acceptance probabilities (21) is immaterial if

1

〈k〉 + 2

〈k〉2

(
kin

max〈kout2〉 + kout
max〈kin2〉)  N. (25)

We see from this that we can apply the accept-all edge-swap
process with confidence when we are working with a large
network with a narrow degree distribution.

IV. MOBILITIES OF SIMPLE GRAPH EXAMPLES

In this section, we confirm the validity of the mobility
formulas (9) and (10) for several simple examples of directed
graphs.

(1) Two isolated bonds: Here we have c12 = 1, c34 = 1, and
cij = 0 for all (i,j ) /∈ {(1,2),(3,4)}. It is immediately clear that
c� = 0, and∑

ij

kin
i cij k

out
j = 2,

∑
j

kout
j kin

j = 0, 〈k〉 = 2

N
,

Tr(c2) = Tr(c3) = Tr(cc†c) = 0, Tr(cc†cc†) = 2.

Insertion into (9) and (10) gives n�(c) = 1 and n	(c) = 0. As
we would expect, only one (square) move is permitted.

(2) Isolated triangle: This example is defined by c12 =
c23 = c31 = 1, with cij = 0 for all (i,j ) /∈ {(1,2),(2,3),(3,1)}.
Again we have c� = 0, but now

∑
ij

kin
i cij k

out
j =3,

∑
j

kout
j kin

j = 3, 〈k〉= 3

N
,

Tr(c2)=Tr(cc†c) = 0, Tr(c3) = 3, Tr(cc†cc†) = 3.

This results in n�(c) = 0 and n	(c) = 1. The only possible
move is reversal of the directed triangle.

(3) Complete (fully connected) graph: Here cij = 1 − δij ,
and no edge swaps are possible. All nodes have kin

i = kout
i =

N − 1, and since c� = c, we know that n	(c) = 0. This
connectivity matrix, also featured in [18], has eigenvalues
λ = N − 1 (multiplicity 1) and λ = −1 (multiplicity N − 1).
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Hence,∑
ij

kin
i cij k

out
j = N (N − 1)3,

∑
j

kout
j kin

j = N (N − 1)2,

Tr(c2) =
∑

i

λ2
i = N (N − 1),

Tr(cc†c) = Tr(c3) =
∑

i

λ3
i = N (N − 1)(N − 2),

Tr(cc†cc†) = Tr(c4) =
∑

i

λ4
i = (N − 1)[(N − 1)3 + 1].

Assembling the entire expression for the square mobility term
(9) indeed gives the correct value n�(c) = 0.

(4) Directed spanning ring: This directed graph, defined
by cij = δi+1,j modulo N , gives a ring with a flow around it.
We choose N > 2. Once more, c� = 0, and we obtain for the
relevant terms∑

ij

kin
i cij k

out
j =

∑
j

kout
j kin

j = N, 〈k〉 = 1,

Tr(c2) = Tr(c3) = Tr(cc†c) = 0, Tr(cc†cc†) = N.

The final result, n�(c) = 1
2N (N − 3) and n	(c) = 0, is again

what we would expect. As soon as one first bond to participate
in an edge swap is picked (for which there are N options),
there are N − 3 possibilities for the second (since the already
picked bond and its neighbors are forbidden). The factor 2
corrects for overcounting.

(5) Bidirectional spanning ring: Our final example is the
nondirected version of the previous graph, viz., cij = δi,j−1 +
δi,j+1 modulo N , with N > 2. Since c� = c, we have n	(c) =
0. Now∑

ij

kin
i cij k

out
j = 8N,

∑
j

kout
j kin

j = 4N, 〈k〉 = 2,

Tr(c2) = 2N, Tr(c3) = Tr(cc†c) = 0,

Tr(cc†cc†) = 6N.

We thereby find n�(c) = 2N (N − 4). This is double the
mobility evaluated in [18], since every move in the undirected
version of the network corresponds to two possible moves in
the directed version of the network.

V. A RANDOMIZATION PROCESS WHICH PRESERVES
DEGREES AND TARGETS DEGREE-DEGREE

CORRELATIONS

So far we applied formula (5) for the canonical acceptance
probabilities for directed graph edge swapping to the problem
of generating graphs with prescribed in and out degrees
(kin,kout) and a uniform measure. Here we consider how to
generate graphs which, in addition, display certain degree
correlations. We first rewrite (5) as

A(c|c′) =
[

1 + n(c)

n(c′)
eH (c)−H (c′)

]−1

. (26)

These probabilities (26) ensure that the edge-swapping process
evolves into the stationary state on � = {c ∈ {0,1}N2 |kin(c) =
kin,kout(c) = kout} defined by p∞(c) = Z−1 exp[−H (c)]. The
full degree-degree correlation structure of a directed graph
c is captured by the joint degree distribution of connected
nodes,

W (�k,�k′|c) = 1

N〈k〉
∑
ij

cij δ�k,�ki (c)δ�k′,�kj (c), (27)

with �k = (kin,kout). The maximum entropy distribution on �,
viz., all directed graphs with prescribed in and out degree
sequences, which has the distribution (27) imposed as a soft
constraint, i.e.,

∑
c∈� p(c)W (�k,�k′|c) = W (�k,�k′) for all (�k, �k′),

is

p(c) = Z−1
∏

i

δ�ki ,�ki (c)

∏
ij

{ 〈k〉
N

Q(�ki,�kj )δcij ,1 (28)

+
[

1 − 〈k〉
N

Q(�ki,�kj )

]
δcij ,0

}

(see [22]), in which Q(�k,�k′) = W (�k,�k′)/p(�k)p(�k′) and p(�k) =
p(kin,kout). It should be clear due to the context whether we are
referring to p(c) (the probability of observing a certain network
c in the ensemble) or p(�k) (the probability of finding a node
within a network with kin incoming and kout outgoing edges). It
is now trivial, following [18], to ensure that our MCMC process
evolves to the measure (28) by choosing H (c) = − ln p(c) in
the probabilities (26). This gives

A(c|c′) =
⎧⎨
⎩1 + n(c)

n(c′)

∏
ij

〈k〉
N

Q(�ki,�kj )c′
ij + [

1 − 〈k〉
N

Q(�ki,�kj )
]
(1 − c′

ij )
〈k〉
N

Q(�ki,�kj )cij + [
1 − 〈k〉

N
Q(�ki,�kj )

]
(1 − cij )

⎫⎬
⎭

−1

=
⎧⎨
⎩1 + n(c)

n(c′)

∏
ij

[ 〈k〉
N

Q(�ki,�kj )

1 − 〈k〉
N

Q(�ki,�kj )

]c′
ij − cij

⎫⎬
⎭

−1

.

(29)

If the proposed move is a square swap, it is characterized by
four distinct nodes (i,j,k,�), and takes us from a graph c′ with
c′
ij c

′
k�c̄

′
kj c̄

′
i� = 1 to a new graph c with c̄ij c̄k�ckj ci� = 1 (leaving

all other N2− 4 bond variables unaffected). For such moves,
the acceptance probabilities (29) become

A�(c|c′) =
⎧⎨
⎩1 + n(c)

n(c′)

[
N

〈k〉Q(�kk,�kj )
− 1

][
N

〈k〉Q(�ki ,�k�)
− 1

]
[

N

〈k〉Q(�ki ,�kj )
− 1

][
N

〈k〉Q(�kk,�k�)
− 1

]
⎫⎬
⎭

−1

.

(30)

For large N , we may choose to approximate this by

A�(c|c′) ≈
[

1 + n(c)

n(c′)
Q(�ki,�kj )Q(�kk,�k�)

Q(�kk,�kj )Q(�ki,�k�)

]−1

. (31)

If the proposed move is a triangle edge swap, it is char-
acterized by three distinct nodes (i,j,k), and takes us from
a graph c′ with c′

ij c
′
jkc

′
ki c̄

′
ji c̄

′
kj c̄

′
ik = 1 to a new graph c

with c̄ij c̄jk c̄kicjickj cik = 1 (leaving all other N2− 6 bond
variables unaffected). Now the acceptanceprobabilities (29)
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become

A	(c|c′) =
⎧⎨
⎩1 + n(c)

n(c′)

[
N

〈k〉Q(�kj ,�ki )
− 1

][
N

〈k〉Q(�kk,�kj )
− 1

][
N

〈k〉Q(�ki ,�kk )
− 1

]
[

N

〈k〉Q(�ki ,�kj )
− 1

][
N

〈k〉Q(�kj ,�kk )
− 1

][
N

〈k〉Q(�kk,�ki )
− 1

]
⎫⎬
⎭

−1

. (32)

For large N , we may choose to approximate this by

A	(c|c′) =
[
1 + n(c)

n(c′)
Q(�ki,�kj )Q(�kj ,�kk)Q(�kk,�ki)

Q(�kj ,�ki)Q(�kk,�kj )Q(�ki,�kk)

]−1

. (33)

VI. NUMERICAL SIMULATIONS OF THE CANONICAL
RANDOMIZATION PROCESS

In this section, we describe numerical simulations of our
canonical MCMC graph randomization process and its accept-
all edge-swapping counterpart, applied to synthetic networks
and to biological signaling networks. We use the Mersenne
twister random-number generator from [23]. For numerical
implementation, we use expressions for the incremental
change in the mobility terms following a single edge-swap
move (similar to how this was done for nondirected networks
[18])—see the Appendix. This avoids having to calculate
n(c) after each move, which would involve repeated matrix
multiplications. We find that the increase in running time
relative to the naive approach using our adjusted acceptance
probability is not material. For example, in the real biological
examples shown in Figs. 8 and 9, both approaches equilibrate
within minutes using a desktop personal computer. The
difference in running times between the two is less than
10%. Targeting a specific degree-degree correlation does carry
a significant penalty in terms of computer time due to the
need to calculate a more complicated acceptance probability
at every step. However, it is likely that the implementation
could be substantially sped up and optimized if required for
a real application. Full source code (in C++) and Windows
executables of our implementation are available on request.

We find that the most convenient marker of sampling bias
in randomization is the mobility n(c) itself, which we will
therefore use to monitor the dynamics of the process. For the
synthetic networks discussed in Secs. VI A and VI B, we can
calculate the mobility for each type of network, hence we can
directly relate it to the proportion of time that the process
actually spends in each configuration versus the expected
proportion of time for an unbiased process. For the real
biological networks, since our postulate is that the “biased”
process favors networks with higher mobilities, it seems
reasonable to assume that the (running) average mobility over
the course of the process will be the statistic that most clearly
illustrates the difference between the two properties.

A. “Split-flow” network

A “split-flow” network (see, e.g., [19]) is built as follows.
Node i = 1 has degrees (kin

1 ,kout
1 ) = (0,K); we have K nodes

(i = 2, . . . ,K + 1) with degrees (kin
i ,kout

i ) = (1,1), and a final

node with degrees (kin
K+2,k

out
K+2) = (K,0). There exist two types

of graphs with this specified degree sequence. The first is
shown in the left of Fig. 3. The second type is obtained from
the first by choosing two of the K “inner nodes”, of which
one will cease to receive a link from i = 1 and the second
will cease to provide a link to i = K + 2; so the mobility
of the left graph is n(c) = K(K − 1). On the right-hand-side
configurations in Fig. 3, we can execute three possible square
edge-swap types: returning to the previous state (1 such move),
changing the internal node that is not receiving a link from
i = 1 (K − 2 such moves), or changing the internal node
that is not sending a link to i = K + 2 (K − 2 such moves),
giving a total mobility for the graphs on the right of n(c) =
2K − 3. The total number of such split-flow networks is |�| =
K(K − 1) + 1.

Figure 4 shows graph randomization dynamics for a
split-flow network with K = 25, comparing accept-all edge
swapping [which would sample graphs with the bias p(c) =
n(c)/

∑
c′∈� n(c′)] to the canonical edge-swap process (21)

that is predicted to give unbiased sampling of graphs, p(c) =
1/|�|. The predicted expectation values of the mobilities in
the two sampling protocols are

accept all: 〈n(c)〉 =
∑

c∈� n2(c)∑
c∈� n(c) = 5K2 − 13K + 9

2(K − 1)
≈ 58.52,

canonical: 〈n(c)〉 =
∑

c∈� n(c)
|�| = 2K(K − 1)2

1 + K(K − 1)
≈ 47.92.

The simulation results confirm these quantitative predictions
(see caption of Fig. 4 for details) and underlines the sampling
bias caused by accept-all edge swapping, as well as the lack
of such a bias in our canonical MCMC process.

B. “Nearly hardcore” networks

“Nearly hardcore” networks are another example of graphs
for which accept-all edge-swap sampling is known to exhibit
a significant bias [18]. The directed version of such networks

FIG. 3. (Color online) The possible realizations of a split-flow-
type network, with N = K + 2. The left-hand configuration has a
mobility of K(K − 1); there is only 1 such configuration. The right-
hand configuration has mobility of 2K − 3; there are K(K − 1) such
configurations.
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45

50

55

60

65
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iterations

n (c)〉 〉

FIG. 4. (Color online) Comparison for split-flow networks with
K = 25 of randomization via accept-all edge swapping (squares) vs
edge swapping with the canonical acceptance probabilities (crosses).
The mobility 〈n(c)〉 is used as a dynamical observable since its
expectation value is sensitive to sampling bias. Each marker gives
the average mobility over 10 000 iterations. Observed values are
in good agreement with theoretical predictions: 〈n(c)〉 ≈ 58.32 for
accept-all edge swapping (predicted: 58.52, shown by upper solid
line) vs 〈n(c)〉 ≈ 47.95 for correct edge swapping (predicted: 47.92,
shown by lower solid line).

is constructed from a single isolated bond plus a complete
subgraph of size K = N − 2; see Fig. 5. Triangle swaps are
not possible. From the graph shown in the figure (the “mobile”
state, A), there are K(K−1) ways to choose two nodes of
the core to combine with the two noncore nodes to form an
edge-swap quartet, hence this state has nA(c) = K(K−1).
After an edge swap, the graph in Fig. 5 is replaced by one
in which one noncore node receives a link from the core,

FIG. 5. (Color online) The directed version of a “nearly hardcore”
network. Given the imposed degree sequences, there are only two
types of graphs: the one shown here and the one obtained via an edge
swap that involves the nodes of the isolated link and two nodes from
the core.

FIG. 6. (Color online) Illustration of the edge swap that trans-
forms a nearly hardcore graph from state A to one of the type B
states.

and the other sends a link to the core; see Fig. 6. There
are K(K−1) such graphs, to be called type B, hence the
total number of nearly hardcore graphs is |�| = K(K−1)+1.
From each type B graph, the inverse swap can be applied, plus
2(K−2) further moves that each equate to the replacement of
one of the core nodes involved in the previous swap by another.
Hence, nB(c) = 2K−3. These statements are confirmed by
formula (9).

The predicted expectation values of the mobilities in the two
sampling protocols, namely, accept-all edge swapping [which
would sample graphs with the bias p(c) = n(c)/

∑
c′∈� n(c′)]

and the canonical edge-swap process (21) [predicted to give
unbiased sampling of graphs p(c) = 1/|�|] are

accept all: 〈n(c)〉 = n2
A(c) + K(K − 1)n2

B(c)

nA(c) + K(K − 1)nB(c)

= 5K2 − 13K + 9

2(K − 1)
,

canonical: 〈n(c)〉 = nA(c) + K(K − 1)nB(c)

1 + K(K − 1)

= 2K(K − 1)2

1 + K(K − 1)
.

Figure 7 shows graph randomization dynamics for a nearly
hardcore network with K = 18 (so N = 20). Here the theory,

30

35

40

45

0 100,000 200,000 300,000 400,000 500,000

n (c)〉 〉

iterations

FIG. 7. (Color online) Comparison for nearly hardcore networks
with K = 18 of randomization via accept-all edge swapping (squares)
vs edge swapping with the canonical acceptance probabilities
(crosses). Each marker gives the average mobility over 10 000
iterations. Observed mobility values are again in good agreement
with theoretical predictions: 〈n(c)〉 ≈ 41.09 for accept all (predicted:
41.03, shown by upper solid line) vs 〈n(c)〉 ≈ 33.92 for correct edge
swapping (predicted: 33.89, shown by lower solid line).
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n (c)〉 〉
N 2

FIG. 8. (Color online) Randomization dynamics for the gene
regulation network data of [24]. The observable shown is a running
average of the normalized average square mobility 〈n� (c)〉/N 2. We
compare accept-all edge swapping (+), canonical edge swapping
aimed at uniform sampling of all graphs with the biological degree
sequence of the biological network (�), and canonical edge swapping
aimed at uniform sampling of all graphs with the degree sequence
(�k1, . . . ,�kN ) and the degree-degree correlation kernel W (�k,�k′) of
the biological network (	). To demonstrate that the above processes
are effectively shuffling the networks, we measure the Hamming
distance between the start and end networks. The Hamming distance
is defined as 1

2E

∑
ij |cstart

ij − cend
ij |, where E is the total number of

edges. A value of zero would indicate that the start and end networks
were identical. A value of 1 would indicate that the start and end
networks had no edges in common. Hamming distances between the
start and end networks of �, +, and 	 were 0.8, 0.8, and 0.75,
respectively.

i.e., the previous two formulas, predicts that we should see
〈n(c)〉 ≈ 41.03 for accept-all edge swapping, and 〈n(c)〉 ≈
33.89 for unbiased sampling. Again the simulation results
confirm our predictions (see caption of Fig. 7 for details).

3.45

3.5

3.55

0 500,000 1,000,000 1,500,000 2,000,000

iterations

n(c)

N2
〉 〉

FIG. 9. (Color online) Randomization dynamics for the gene
regulation network of [25]. The key and the axes are the same as
in Fig. 8. Hamming distances between the start and end networks of
�, +, and 	 were 0.94, 0.94, and 0.86, respectively. Please also see
Fig. 10 for a demonstration of how the 	 process effectively targets
the degree-degree correlation of the original network.
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FIG. 10. (Color online) These charts summarize the (c), (d)
degree-degree correlations observed in the original network, (a), (b)
the final network after the process targeting the flat measure, and
(e), (f) the process tailored to preserve the degree-degree correlation
pattern of the original network. The data used is based on [25] and the
process shown in Fig. 9. (a), (c), and (e) summarize the correlation
between the in degree of a node and the average out degree 〈kout

nn 〉in of
its in neighbors. (b), (d), and (f) summarize the correlation between
the out degree of a node and the average in degree 〈kin

nn〉out of its out
neighbors. This representation was chosen as a widely adopted and
easy-to-interpret measure of the assortativity of a directed network.
The purpose of these charts is to demonstrate that the process targeting
degree-degree correlations successfully reproduces the key features
of the assortativity of the real networks. In particular, the pronounced
downward slope in the last four charts brings to mind the work of [12]
on the related problem of protein interaction networks. Reference [12]
also observed a characteristic downward slope to the assortativity
charts from their data, and postulated that this may be a key “design”
feature of real networks, contributing greater stability and improved
specificity.

C. Application to gene regulation networks

Gene regulation networks are important examples of di-
rected biological networks. Figures 8 and 9 show numerical
results of the randomization dynamics applied to the gene
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regulation network data of [24] (with N = 5654 nodes) and
[25] (with N = 3865 nodes), respectively. We apply all three
randomization processes discussed so far in this paper, viz.,
accept-all edge swapping, canonical edge swapping aimed at
uniform sampling of all graphs with the degree sequences of
the biological network, and canonical edge swapping aimed
at uniform sampling of all graphs with the degree sequence
(�k1, . . . ,�kN ) and (on average) the degree-degree correlation
kernel W (�k,�k′) of the biological network.

In contrast to the synthetic examples in the previous section,
in gene regulation networks we do not observe significant
divergence between accept-all versus canonical edge-swap
randomization; this is similar to what was observed earlier
for the randomization of protein-protein interaction networks
in [18]. We also see that in both cases, the biological network
is significantly more mobile than the typical network with the
same degree sequence. However, Figs. 8 and 9 suggests that
the set of networks that share both the degree sequence and
the degree correlations with the biological one (and hence
resemble more closely the biological network under study) all
have high mobilities.

The implementation of degree-degree correlation targeting
directly has the effect of severely reducing the space of graphs
through which the process can pass, hence we would expect
finite-size effects to be more pronounced. The process would
be less restricted, and hence more natural, with a smoothed
target degree-degree correlation. There is a trade-off between
the flexibility of the process and the accuracy of the targeting.
We have used a light Gaussian smoothing, generalizing what
was used in [26] to the higher dimension we need. The best
choice target degree-degree correlation—including decisions
about smoothing—will very much depend on the particular
problem being studied.

VII. CONCLUSION

In this paper, we have built on the work of [3] and [18]
to define an ergodic and unbiased stochastic process for
randomizing directed binary non-self-interacting networks,
which keeps the number of in and out connections of each node
constant. The result takes the form of a canonical Markov chain
Monte Carlo (MCMC) algorithm based on simple directed
edge swaps and triangle reversals, with nontrivial move
acceptance probabilities that are calculated from the current
state of the network only. The acceptance probabilities correct
for the entropic bias in accept-all edge-swap randomization,
which is caused by the state dependence of the number of
moves that can be executed (the mobility of a graph).

Our process is precise for any network size and network
topology, and sufficiently versatile to allow random directed
graphs with the correct in and out degree sequence to be
generated with arbitrary desired sampling probabilities. The
algorithm can be used, e.g., to generate truly unbiased random
directed graphs with imposed degrees for hypothesis testing
(in contrast to the “edge stub” algorithm or the accept-all
edge-swap algorithm, both of which are biased) or to generate
more sophisticated null models, which inherit from a real
network both the degree sequence and the degree correlations
but are otherwise random and unbiased.

Our core insight is similar to [27] and [3]. However, our
work takes the formalism further, and generates a direct
adjustment to the MCMC based on the current state of the
network only, rather than a retrospective adjustment to the
observed process [27] or a search of the entire state space [3].
Moreover, our approach can be generalized to generate more
tailored null models (e.g., our example of targeting a specified
degree-degree correlation).

Our earlier papers, i.e., [28] (undirected case) and [22]
(directed case), also consider constrained ensembles of random
graphs, but from the point of view of rigorously quantifying
the entropy of the ensembles. These papers may be of interest
to researchers looking to study, quantify, and compare the
topological properties of their networks in a more information-
theoretic framework. The prequel to the current paper [18]
would be of interest to researchers doing numerical studies on
undirected networks.

We have derived bounds to predict for which degree
sequences the differences between accept-all and correct
randomization (i.e., the effects of sampling bias) will be neg-
ligible. The application to synthetic networks showed a large
discrepancy between the accept-all and correct randomization
processes, and good agreement with our theoretical predictions
for the values of key observables that are affected by the
entropic bias of incorrect randomization. For the biological
networks which we studied (gene regulation networks), we
find the differences between correct and incorrect sampling
in the space of graphs with imposed degree sequences to be
negligible. However, this cannot be relied upon to continue in
future studies, especially when network data sets become
less sparse, or randomization processes which target more
complicated topological observables are used. Since our
method provably samples graphs uniformly, it can be used to
test whether, for a given real network, the naive edge swapping
and the correct approach deviate materially.

Biological signaling networks tend to have “fat-tailed”
distributions with low average degree and relatively high
clustering levels, whereas in a graph ensemble defined by
prescribing in and out degree sequences and uniform graph
probabilities, graphs will typically have O(1) triangles per
node or less. Hence, if we run edge-swap processes on
such ensembles, by the time equilibration is approached, the
algorithm will typically be moving through networks with low
clustering, where the change in mobility coming from those
terms that “count” triangles will be very low. However, this
will be different if we target a nonflat measure, for instance
if we generate graphs with degree-degree correlations. Since
biological degree-degree correlations seem to be associated
with clustering, it will become increasingly dangerous to
assume that the sampling bias caused by using accept-all
edge-swap dynamics will be modest.

Given that precise and practical alternatives are now
available, we feel that there is no justification for the use of
biased graph randomization processes. In those cases where
we seek to generate unbiased random directed graphs with
in and out degrees identical to some observed network, our
canonical MCMC process would take the observed graph as
its seed and take care of the required unbiased sampling.
In those cases where we specify degree sequences ab initio,
without having a seed graph, one may use the Molloy-Reed
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algorithm to generate a (biased) seed graph prior to running our
algorithm.

In addition to being rigorously free of entropic sampling
bias, our present canonical MCMC process is also able
to generate directed degree-constrained networks with any
arbitrary specified sampling probabilities. We have shown
examples of the generation of synthetic graphs with precisely
controlled expectation values for the degree-degree correlation
kernels, where the imposed sampling measure is a maximum
entropy distribution on the set of graphs with prescribed
degrees, with degree correlations imposed as a soft constraint.
Degree correlation is a promising candidate to define a better
null model, as it has been observed in the literature to act
as a “signature” distinguishing different types of networks
(e.g., [29,30]).

The exact connection which we established between the
MCMC parameters and the resulting equilibrium distribu-
tion means that our approach can be used to define an
edge-swapping MCMC process which is directly related to
dynamical processes defined by others (e.g., it should be
possible to define a process which is equivalent to taking
degree distribution as a soft constraint, such as considered
in [6]). This could act as a bridge between different methods
of analyzing network observables in random graph ensembles.

Other directions for future research could be to look at
weighted networks (e.g., to integrate our ideas with those
in papers such as [31]) or at bipartite networks (which also
have interesting applications; see, e.g., [32]). Furthermore, it
would seem appropriate in the field of network hypothesis
testing to take more seriously the nontrivial number of short
loops in biological signaling systems. Whenever we randomize
within the large amorphous space of graphs that inherit
from the biological network only the degree sequence, we
are effectively running dynamics on graphs that are locally
treelike, where (conveniently) the mobility issues are minor.
But we know already that this large set will typically produce
null models that are very much unlike biological networks for
that same reason. How informative are small p values in this
context?
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APPENDIX: EFFICIENT CALCULATION OF CHANGES
IN MOBILITY TERMS FOLLOWING ONE MOVE

The calculation of the mobility n(c) terms is computation-
ally heavy. Given that our moves are simple and standard, we
follow the alternative route in [18] and derive formulas for
calculating the change in mobility due to one move so that we
can avoid repeated heavy matrix multiplications at each time
step.

1. Change in n� (c) following one square-type move

Without loss of generality, define our square move to be the
transformation between matrix c and x, involving four nodes
(a,b,c,d), such that, for all (i,j ), xij = cij + �ij , with

�ij = δiaδjd + δicδjb − δiaδjb − δicδjd .

We now determine the overall change induced in n�(c) by
finding the impact of an edge swap on each term in (9) on the
right-hand side of the expression above.

(a) Term 1:

Tr(xx†xx†) − Tr(cc†cc†)

=
∑
ijkm

[cij ckj ckmcim − (cij + �ij )(ckj + �kj )

× (ckm + �km)(cim + �im)]

= �ijckj ckmcim + · · · + �ij�kj ckmcim + · · ·
+�ij�kj�kmcim + · · · + �ij�kj�km�im,

where · · · refers in each case to three similar terms (with their
appropriate indices). Let us inspect what happens when two
� terms are multiplied together. We might have the first suffix
repeated, the second suffix repeated, or no repeated suffixes:

�ij�im = 2[δjd (δmd − δmb) + δjb(δmb − δmd )],
(A1)

�ij�kj = 2[δia(δka − δkc) + δic(δkc − δka)].

One immediately observes that∑
ijkm

�ij�kj�km�im = 4
∑
ik

[δiaδia(δkaδka + δkcδkc)

+ δicδic(δkcδkc + δkaδka)] = 16.

To handle two � terms with different suffixes, we use

�ijckj = ckb (δic − δia) + ckd (δia − δic) , (A2)

which leads us to ∑
ijkm

�ij ckj�kmcim = 4.

Returning to the result (A1), it follows that

�ij�kj cimckm = 2 [δia(δka − δkc) + δic(δkc − δka)] cimckm

= 2
(
kin
a + kin

c

) − 4camccm,

and the symmetric term gives

�ij�imckj ckm = 2
(
kout
d + kout

b

) − 4cidcib.

For the third-order terms, we combine (A1) and (A2):∑
ijkm

�ij�im�kj ckm

= 2
∑
ik

{[δia(δka − δkc) + δic(δkc−δka)]

× [δiackd + δicckb − δiackb − δicckd ]}
= 2(cad − ccd − cab+ccb − cab+ccb + cad − ccd ) = −8.

By permutation of suffixes, all such terms evaluate to −8.
Finally, we turn to the four terms where only one �

appears, corresponding to permutations of �ijckj ckmcim =
ckdckmcam + ckbckmccm − ckbckmcam − ckdckmccm. Adding up
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all of the separate elements above, we obtain the change in the
square mobility term due to one application of a square move:

�
[

1
2 Tr(cc†cc†)

]
= 2

(
kout
d + kout

b + kin
a + kin

c

) + 2(ckdckmcam

+ ckbckmccm − ckbckmcam − ckdckmccm)

− 4(cidcib + camccm + 1). (A3)

(b) Term 2:

�

⎡
⎣∑

ij

kin
i cij k

out
j

⎤
⎦ =

∑
ij

kin
i (xij − cij )kout

j

=
∑
ij

kin
i [δiaδjd + δicδjb

− δiaδjb − δicδjd ]kout
j

= kin
a kout

d + kin
c kout

b − kin
a kout

b − kin
c kout

d .

(A4)

(c) Term 3:

Tr(xx†x) − Tr(cc†c)

=
∑
ijk

[cij + �ij ][ckj + �kj ][cki + �ki] − cij ckj cki

=
∑
ijk

[�kjcij cki + �ijckj cki + �kicij ckj + �ij�kj cki

+�kj�kicij + �ij�kickj + �ij�kj�ki].

The product of two � terms gives

�ij�kj = δik[δjd (δia − δic) + δjb(δic − δia)]

−δjd (δiaδkc + δicδka) − δjb(δicδka + δiaδkc),

but �ij�ki = 0, and in a straightforward way, we obtain∑
ijk

�kj cij cki =
∑
ijk

[δkaδjd + δkcδjb − δkaδjb − δkcδjd ]cij cki

=
∑

i

[caicid + ccicib − caicib − ccicid ].

Assembling all terms and their symmetric equivalents leads to
an expression which can be summarized as

�[Tr(cc†c)] = MutN(a,d) + MutN(c,b) − MutN(a,b)

−MutN(c,d) − 2(cbd + cdb + cac + cca),

(A5)

where

MutN(α,β) =
∑

i

[cαiciβ + cαicβi + ciαciβ]. (A6)

(d) Term 5:

�[Tr(c2)] = Tr(x2) − Tr(c2)

=
∑
ij

[cij + (δiaδjd + δicδjb − δiaδjb − δicδjd )]

× [cji + (δjaδid + δjcδib − δjaδib − δjcδid )]

− Tr(c2)

= 2(cda + cbc − cba − cdc). (A7)

(e) Terms 4 and 6: The two terms 1
2N2〈k〉2 and

∑
i k

out
i kin

i do
not change, since our stochastic process conserves all degrees.

In combination, the above ingredients lead us to the
following updated formula for the square mobility (9) as a
result of the edge swap (A1):

�n� = 2
(
kout
d + kout

b + kin
a + kin

c

) + 2(ckdckmcam + ckbckmccm

− ckbckmcam − ckdckmccm) − 4(cidcib + camccm + 1)

− [
kin
a kout

d + kin
c kout

b − kin
a kout

b − kin
c kout

d

]
+MutN(a,d) + MutN(c,b) − MutN(a,b)

−MutN(c,d) − 2(cbd + cdb + cac + cca)

+ cda + cbc − cba − cdc. (A8)

2. Change in n�(c) following one square-type move

The different terms in the triangle mobility term (to be
called Term 7, Term 8, Term 9, and Term 10 to avoid confusion
with the previous section) are

n(c)	 = 1
3 Tr(c3) − Tr(c�c 2) + Tr(c� 2c) − 1

3 Tr(c� 3).

(a) Term 7:

�Tr(c3) =
∑
ijk

[xij xjkxki − cij cjkcki]

= 3
∑

i

(ciacdi + ciccbi − ciacbi − ciccdi).

(b) Term 8: Here we have to inspect first how the matrix c�
of double bonds is affected by a square move:

x
�
ij = c

�
ij + �

�
ij + �

�
ji

with

�
�
ij = δiaδjdcda + δicδjbcbc − δiaδjbcba − δicδjdcdc.

It follows that

�Tr(c�c2) = Tr(x�x2) − Tr(c�c2) =
∑
ijk

(c�
ij + �

�
ij + �

�
ji)

× (cjk + �jk)(cki + �ki) − Tr(c�c2).

Arguments similar to those employed before show that∑
j �

�
ij�jk = ∑

i �
�
ij�ki = 0, whereas the remaining two

“compound” terms give∑
ijk

�
�
ji�jkcki

=
∑
ijk

(δjaδidcda + δjcδibcbc − δjaδibcba − δjcδidcdc)

× (δjaδkd + δjcδkb − δjaδkb − δjcδkd )cki

= (cda + cdc)δid (δkd − δkb)cki

+ (cbc + cba)δib(δkb − δkd )cki

= −(cda + cdc)cbd − (cbc + cba)cdb,
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and∑
ijk

�
�
jicjk�ki

=
∑
ijk

(δjaδidcda + δjcδibcbc − δjaδibcba − δjcδidcdc)

×(δkaδid + δkcδib − δkaδib − δkcδid )cjk

= (cda + cba)δja(δka − δkc)cjk

+ (cbc + cdc)δjc(δkc − δka)cjk

= −[(cda + cba)cac + (cbc + cdc)cca].

The product of three �s can be immediately seen to be zero by
earlier arguments (repeated suffix in different positions). The
other terms evaluate as follows:∑

ijk

�
�
ij cjkcki =

∑
β∈{a,c},α∈{d,b}

I(α,β)cαkcαβckβ,

∑
ijk

�kic
�
ij cjk =

∑
β∈{a,c},α∈{d,b}

I(α,β)c�
αkckβ, (A9)

∑
ijk

�jkc
�
ij cki =

∑
β∈{a,c},α∈{d,b}

I(α,β)cαkc
�
kβ,

where I(α,β) is an indicator function which evaluates to 1 if
bond (α,β) is created by the present move, to −1 if the bond
(α,β) is destroyed, and zero otherwise. Similarly,∑

ijk

�
�
jicjkcki =

∑
ijk

cjkcki × (δjaδidcda + δjcδibcbc

− δjaδibcba − δjcδidcdc)

=
∑

k

(cakckdcda + cckckbcbc

− cakckbcba − cckckdcdc).

Putting all of these subterms together yields

�[Tr(c�c2)] =
∑

β∈{a,c},α∈{d,b}
I(α,β)

∑
k

[cαβ(cαkckβ + cβkckα)

+ c
�
αkckβ + cαkc

�
kβ] − cbd (cda + cdc)

+ cac(cda + cba) + cdb(cbc + cba)

+ cca(cbc + cdc). (A10)

(c) Terms 9 and 10: The same steps as followed to calculate
Term 8 can be also be applied to Terms 9 and 10. In
combination, the above ingredients lead us to the following
updated formula for the triangle mobility (10) as a result of
the edge swap (A1):

�n	 =
∑

β∈{1,3},α∈{4,2}
I(α,β)

∑
k

[cαkckβ − cαβ(cαkckβ + cβkckα)

− c
�
αkckβ − cαkc

�
kβ + c

�
αkc

�
kβ − cαβ (c�

αkc
�
kβ + c

�
kαc

�
βk)

+ cαβ (c�
αkckβ + cαkc

�
kβ + c

�
kαcβk + ckαc

�
βk)]

− cbd (cdb − 1)[cda(1 − cba) + cdc(1 − cbc)]

− cac(cca − 1)[cda(1 − cdc) + cba(1 − cbc)]

− cdb(cbd − 1)[cbc(1 − cdc) + cba(1 − cda)]

− cca(cac − 1)[cbc(1 − cba) + cdc(1 − cda)]. (A11)

3. Change in n�(c) following one triangle-type move

The triangle move is a transformation from network c to
network x, characterized by xij = cij + �ij , with

�ij = δibδja + δicδjb + δiaδjc − δiaδjb − δibδjc − δicδja.

(A12)

The terms which make up the square mobility term are

n�(c) = 1

2
Tr(cc†cc†) −

∑
ij

kin
i cij k

out
j + Tr(cc†c)

+ 1

2
N2〈k〉2 + 1

2
Tr(c2) −

∑
i

kout
i kin

i .

(a) Term 2:∑
ij

kin
i �ij k

out
j =

∑
α,β∈{1,2,3}

I(α,β)kin
α kout

β .

(b) Term 3:

�[Tr(cc†c)] = Tr(xx†x) − Tr(cc†c)

=
∑
ijk

(cij + �ij )(ckj + �kj )

× (cki + �ki) − cij ckj cki .

We consider each subterm separately:∑
ijk

�ij ckj cki =
∑
ijk

�kickj cij = 0,

∑
ijk

�kj cij cki =
∑

α,β∈{1,2,3}
I(α,β)

∑
i

cαiciβ .

Clearly, ∑
ijk

�ij�kj =
∑
ijk

�ki�kj = 0,

since the � kills any suffix repeated in the same position.
Furthermore,∑

i

�ij�ki =
∑

α,β∈{a,b,c}
(1 − δαβ)δjαδkβ − 2

∑
α∈{a,b,c}

δjαδkα,

hence ∑
ijk

�ij�kickj = 3.

So it follows that

Tr(xx†x) − Tr(cc†c) = 3 +
∑

α,β∈{a,b,c}
I(α,β)

∑
i

cαiciβ .

(c) Term 5: We observe that
∑

ij cji�ij = 3 and∑
ij �ij�ji = −6. We conclude that �[Tr(c2)] = 0. This is as

expected, since double bonds cannot participate in a triangle
swap.

(d) Term 1: Finally we return to Term 1 using the various
shortcuts derived above. We recall that a suffix repeated in the
same position sends the term to zero. Hence, we already know
that all terms featuring the product of three or four � terms
will be zero. Next,∑

j

�ij ckj =
∑

α,β∈{1,2,3}
I(α,β)δiαckβ .
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From this it follows that∑
ij

�ij ckj�kmcim = 0.

Finally,∑
ijkm

�ij ckj ckmcim

= ckm[ck1(c2m − c3m) + ck2(c3m − c1m) + ck3(c1m − c2m)]

(and similarly with the other terms related to this one by simple
permutations). Overall, we thus find

�Tr(cc†cc†) = 4
∑
km

ckm

∑
α,β∈{a,b,c}

I(α,β)cαmckβ.

Collecting all of these terms together, we see that the ex-
pected change in the square mobility term after the application
of a single triangle-type move is

�[n�] =
∑

α,β∈{a,b,c}
I(α,β)

[
cαiciβ + kout

β kin
α

+ 2
∑
km

ckmcαmckβ

]
+ 3. (A13)

4. Change in n�(c) following one triangle-type move

This final incremental term is best evaluated by an
algorithm which, for each edge created or destroyed,
searches for monodirected triangles that have been created or
destroyed.
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