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Optimization of fractal space frames under gentle compressive load
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The principle of hierarchical design is a prominent theme in many natural systems where mechanical efficiency
is of importance. Here we establish the properties of a particular hierarchical structure, showing that high
mechanical efficiency is found in certain loading regimes. We show that in the limit of gentle loading, the optimal
hierarchical order increases without bound. We show that the scaling of material required for stability against
loading to be withstood can be altered in a systematic, beneficial manner through manipulation of the number of
structural length scales optimized upon. We establish the relationship between the Hausdorff dimension of the
optimal structure and loading for which the structure is optimized. Practicalities of fabrication are discussed and
examples of hierarchical frames of the same geometry constructed from solid beams are shown.
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I. INTRODUCTION

Hierarchical designs are found throughout nature where
highly mechanically efficient load bearing structures are
required [1]. Trabecular bone serves as a prime example
where requirements for stiffness and strength are met through
utilizing structural hierarchy [2]. Allometric scaling has been
observed in the latticelike substructure of the trabecular bone:
In mammals, lattice connectivity increases and trabeculae
thickness decreases with decreasing mass of animal [3]. The
structure of fossilized ammonites have long been appreciated
to exhibit a fractal structure in their suture lines [4]. Although
other driving factors have been proposed [5], it has been
persistently hypothesized that higher degrees of structural
hierarchy are responsible for increased resilience to pressure
bearing (for a given mass of construction material) [4,6,7].
It has recently been shown that hierarchical and fractal-like
suture joints can be used to tailor mechanical properties,
load resistance, and flaw tolerance [8]. Further examples
include spider capture silk [9,10], nacre [11], and gecko setae
[12,13], all exhibiting hierarchical structures with geometric
parameters tailored for different loading conditions.

Recent theoretical works have found that efficient structures
can be generated through a self-similar design principle
[14–16]. Under external pressure and gentle compressive
loading the same tendencies are found: With decreasing load,
the optimal number of hierarchical orders is found to increase
and a tendency towards more slender components is observed
[14–17].

Advances in construction techniques have made it possible
to fabricate designs with structural order on a wide range of
length scales. The construction of frames with a photosensitive
polymer can be used in conjunction with other techniques,
such as electroless nickel plating and etching, to create frames
with the same geometry but constructed from hollow, metallic
tubing [18–20]. Using such techniques, hierarchical metallic
lattices, for example, have been created with structural order
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ranging from the nano- to the centimeter scale [18]. Such
techniques make it possible to design and create materials
where beneficial properties of the macrostructure are bought
about through the prudent choice of design parameters at
structural length scales orders of magnitude smaller.

Here, a hierarchical space frame design constructed from
hollow tubes is analyzed in full and its benefits over a solid
beam construction are discussed. A space frame constructed
from solid beams is created through rapid prototyping tech-
niques showing the fabrication of the thin walled structure
to be a plausible goal. The optimal number of hierarchical
levels for a given loading is found and the fractal dimension
of the optimal structure is calculated. We discuss particular
issues of practical importance when designing and fabricating
hierarchical structures.

II. THEORY

A. Solid beam and generation-0

To serve as a reference, we first consider the problem of
obtaining the amount of material that is required, Vreq, to
construct a beam of length L, freely hinged at its ends, stable
under a compressive load F . If we take an initially straight,
solid, slender beam with a circular cross section, constructed
from an isotropic material, we see that the Euler buckling mode
of the strut gives the first limit on stability. The load at which
this instability is reached is given by

F <
π2YI

L2
, (1)

where I is the second moment of area (I = πr4/4 for a solid
beam with a circular cross section) and Y is the Young’s
modulus of the material. Suitable nondimensional variables
for this problem are defined as

f ≡ F

YL2
, (2)

v ≡ Vreq

L3
, (3)
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measuring loading and volume, respectively. For a given f ,
setting r such that the beam is on the point of instability due
to Euler buckling gives us the minimum volume required for
stability. This value of r is found to be

r = L

(
4f

π3

) 1
4

. (4)

Thus the minimum nondimensional volume of material v

required for stability for a given loading f can be expressed
as

v = 2π− 1
2 f

1
2 . (5)

As a comparison, it is noted that the volume of material
required for stability under tension varies linearly with the
loading parameter, or v ∝ f . In all practical applications the
nondimensional parameters f and v are much smaller than 1.
Thus, to support a given magnitude of loading over a given
distance requires less material if the support is under tension
rather than compression. Furthermore, it is seen that splitting
a given load over two tension members, each supporting half
the load, has little consequence on the total volume of material
required; on the other hand, as a result of the above scaling,
the amount of material required increases greatly if multiple
compression members are used to support a given load [21].

If instead the circular beam is taken to be hollow, with thin
walls, two restrictions are seen to apply to the loading. The first
is given by Eq. (1) with I = π [(r + t)4 − r4]/4, where t is the
thickness of the cylinder wall. Second, a short wavelength
failure mode must be considered, Koiter buckling [22], giving
a second inequality,

F <
2πY t2√
3(1 − ν2)

, (6)

where ν is the Poisson ratio. Setting the geometry of the beam
to be such that Euler buckling and Koiter buckling occur at the
same value of loading, it is straightforward to show that

v = 2

[
3(1 − ν2)

4π2

] 1
6

f
2
3 . (7)

In the regime f � 1 this change in scaling law represents a
saving in material over the solid beam. In this work, the hollow
cylinder will be referred to as the generation-0 structure.

B. Hollow generation-1 structure

The generation-1 structure is a simple space frame made
up of n octahedra which separate two end tetrahedra: The
geometry of the space frame is shown in Fig. 1(a) with n = 5.
Here we consider the component cylinders to be hollow with
thin walls. If the length of the whole structure is defined as L,
and the length of an individual component beam is L0, then

L =
√

2

3
(n + 2)L0. (8)

Assume all beams in the structure are to be made up of identical
beams that exhibit Hookean behavior for loading less than the

FIG. 1. Progression to higher generations of the hierarchical
structure. (a) depicts the simple space frame, (b) shows the space
frame with two levels of hierarchy, while (c) shows a space frame
with three levels of hierarchy. The images shown are stereographic:
To see the three-dimensional (3D) image, hold the page 20–40 cm
away and stare “through” the paper until the images merge.

Euler limit and whose spring constant is given by

k0 = YA

L
, (9)

where A is the cross-sectional area of the beam. For large
enough n, the whole frame can be shown to have a bending
stiffness YI and spring constant K given by

YI = BL3
0k0, (10)

K = 36k0

11n + 43
, (11)

where B is a constant found to be B = 0.245 ± 0.001 [14].
If the structure is oriented such that the end points of the
tetrahedra are aligned along the z axis in Cartesian coordinates,
then on loading these end points with a force F in a
compressive manner, it is found that that all beams parallel
with the x-y plane are under tension. Assuming n � 2, the
beams under tension making up the end tetrahedra support a
load of F

2
√

6
while other tension members support a load of
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F

3
√

6
. It is found that all other beams support a compressive

load. The beams connected to the end points are acted on by a
force of

F0 = F√
6
, (12)

while all other beams under compression take half this load. In
the generation-1 frame, there are three failure modes: Koiter
buckling of the individual beams and Euler buckling of both
the composite frame and the individual beams. The three
parameters that we wish to optimize over are r , t , and n.
We proceed by defining

f0 ≡ F0

YL2
0

, (13)

and stating that the beams connected to the loading points of
the structure are on the point of simultaneous failure due to
both Euler and Koiter buckling. Through use of Eqs. (1), (6),
(12), and (13) it follows that

t = L0

[√
3(1 − ν2)f0

2π

] 1
2

, (14)

r = L0

[
2f0

π5
√

3(1 − ν2)

] 1
6

. (15)

Then, using Eqs. (1), (8)–(10), and (12)–(15) and setting the
whole space frame to be on the point of Euler buckling, it is
found that

n = −2 +
⎢⎢⎢⎣6

1
4 π

5
6 B

1
2
[
3(1 − ν2)

] 1
12 f

− 1
6

0

2
2
3

⎥⎥⎥⎦ , (16)

where �·� is the floor function. Then, using Eqs. (8) and (12)
it is found that

f = 3
√

6

2
(n + 2)−2f0. (17)

Using Eqs. (8), (14), and (15), the nondimensional volume is
found to be

v = 27
√

6
(n + 1)f

2
3

0 [3 (1 − ν)]
1
6

π
1
3 2

4
3 (n + 2)3

, (18)

and thus, through the use of Eq. (17),

v ∝ f
3
4 + O(f

7
8 ). (19)

This expression represents a gain in efficiency over both the
solid and hollow beams in the limit f � 1. For comparison a
space frame constructed from solid beams scales as v ∼ f

2
3 .

Thus it is seen, in the limit of gentle loading, the structure
presented here is more efficient.

C. Generation-G optimization

The generation-G structure can be created through an
iterative procedure. In creating the generation-1 structure, the
simple, hollow beam that makes up the generation-0 structure
is replaced with a space frame. It is an analogous step that
takes us from the generation-1 structure to the generation-2
structure: All simple beams in the structure that are loaded

FIG. 2. (Color online) The upper tetrahedron and first octahedron
of a generation-2 hierarchical structure constructed through a rapid
prototyping technique. This structure was created through use of
EnvisionTEC Perfactory machine. The inset shows the layering
effect of the rapid prototyping procedure. The layer thickness of
the structure shown is approximately 25 μm. The material used in
the construction of this structure is EnvisionTec R05 [23].

under compression are replaced by (scaled) generation-1
frames. Thus, it is noted, a generation-G constructed from
hollow tubes has G + 2 characteristic length scales upon
which it could fail. The notation used here will follow that
in Ref. [14]: A given property of the structure that is recurrent
on different hierarchical levels of the structure will be denoted
XG,i , which represents the property X on the ith level in a
generation-G structure (i = 0 and i = G denote the smallest
and largest length scales in the structure, respectively). The
generation-1, -2, and -3 structures are shown in stereographic
form in Fig. 1. Shown in Fig. 2 is the upper tetrahedron and
octahedron of a generation-2 space frame constructed through
rapid prototyping techniques.

The properties of any (sub)frame can be related to the
smallest component beams through expressions involving
{nG,i}. These expressions are dependent only on the geometry
of the spaceframe and are given by

FG,i = 6
i
2 FG,0, (20)

LG,i =
(

2

3

) i
2

i∏
j=1

(nG,j + 2)LG,0, (21)

kG,i = 36i

i∏
j=1

(11nG,i + 43)−1kG,0, (22)

YIG,i = B

(
2

3

) 3(i−1)
2

i−1∏
j=1

(nG,j + 2)3

11nG,j + 43
L3

G,0kG,0, (23)

where kG,i is the effective spring constant of all (sub)structures
of length LG,i , and FG,i is the applied compressive load to each
substructure of length LG,i .
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It is seen that to avoid Euler buckling at each hierarchical
length scale, the constraint

FG,i <
π2YIG,i

L2
G,i

(24)

must be imposed for all i. Given that the smallest beams are
made of hollow tubes, the possibility of Koiter buckling must
be taken into account. This constraint on loading provides us
with the inequality

FG,0 <
2πY t2√
3(1 − ν2)

. (25)

The parameters over which we optimize are r ,t (which are
assumed to be constant over the generation-1 structure), and
{nG,i}. Defining the geometry such that Euler buckling and
the short wavelength Koiter buckling occur simultaneously
in the beams of length LG,0, through use of Eqs. (6), (13),
and (24) with i = 0, it can be shown that r and t are
given by

t = LG,0

[√
3(1 − ν2)f0

2π

] 1
2

, (26)

r = LG,0

[
2f0

π5
√

3(1 − ν2)

] 1
6

. (27)

Using these expressions and Eq. (9) it can be shown that

kG,0 = LG,0Y

[
4f 2

0

√
3(1 − ν2)

π

] 1
3

. (28)

Then using Eqs. (13)–(15), (20), (21), (23), and (24), setting all
(sub)frames to be on the point of failure due to Euler buckling,
it can be observed that

nG,1 = −2 +
⌊

6
1
4 π

5
6 B

1
2
[
3(1 − ν2)

] 1
12 f

− 1
6

0

2
2
3

⌋
, (29)

and, for i > 1,

nG,i = −2 +
⎢⎢⎢⎣

⎧⎨
⎩

√
6

2
4
3

π
5
3 B

[
3(1 − ν2)

] 1
6 f

− 1
3

0

× 12i−1
i−1∏
j=1

nG,j + 2

11nG,j + 43

⎫⎬
⎭

1
2
⎥⎥⎥⎦ . (30)

In this calculation, the spring constant of the simple beams
under tension at any given hierarchical level are chosen to be
equal, and they are set as that of the space frame of the same
length. To achieve this, using Eqs. (21), (22), and (26)–(28),
we see that the radii sG,i of the tension resisting beams of
length LG,i are

sG,i = (12
√

6)i
i∏

j=1

nG,j + 2

11nG,j + 43
r, (31)
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FIG. 3. Volume required for structural stability against loading for
which the structure is optimized, showing generation-0 to generation-
4. Higher generations become optimal as the loading parameter f

decreases.

and t remains constant for the whole structure. For G > 1, it
is found that

f =
(

27

2

)G
2

f0

G∏
j=1

(nG,j + 2)−2 (32)

v =
(

9
√

6

2

)G
f

2
3

0 [3(1 − ν2)]
1
6

2
1
3 π

1
3

G∏
k=1

nG,k + 1

(nG,k + 2)3

×
⎡
⎣3 +

G−1∑
q=1

4q

q∏
j=1

(nG,j + 2)2

(11nG,j + 43)(nG,j + 1)

⎤
⎦ . (33)

To obtain the former equation, Eqs. (2), (13), (20), and (21)
were used, and in the latter, Eqs. (3), (21), (26), and (27). The
scaling of material required to make a stable structure out of
hollow tubes, to leading order, is therefore shown to obey

v ≈ κhol(G)f
G+2
G+3 . (34)

Combining Eqs. (32) and (33) and eliminating f0, a full
expression for the volume required for stability under a given
load can be obtained, and this is plotted in Fig. 3, where
the scaling of Eq. (34) is seen to dominate. For f � 0, this
design shows that considerable gains in efficiency are possible
through increasing the hierarchical order of the structure. In
the limit f → 0 the scaling of material required for stability
against loading to be withstood is seen to tend to that found
for a simple beam under tension. For a given material, κ2(G)
increases with increasing G. Thus, for all nonzero values of
loading, the optimal generation is found to be finite. The
progression of the optimal generation of the hierarchical frame
is shown in Fig. 4, where the material saving and optimal
generation are plotted for various values of F/Y and L. We
see that, for a given Y , low F and high L (or small f ) lead to
higher generation numbers being more efficient.

The optimization procedure described above results in a
structure that sets

LG,0 ∝ √
rLG,1, (35)

r ∝ √
tLG,0, (36)
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FIG. 4. (Color online) The material saving through use of a
generation-G hollow tube structure when compared to a solid beam.
The plot is valid for a material with a Poisson ratio of ν ≈ 0.3.
The progression of optimality for higher generation designs is
clearly shown with the increase in length L or decrease in force
F for a given Young’s modulus Y . Also depicted are regions
showing typical parameters for some compression bearing structures:
approximate regions for steel crane booms [24], iron chair legs,
solar sail compression beams [25] (from an arbitrary stiff material,
Y > 100 GPa), and mammal femurs withstanding only static loads
[3]. Also shown is the positioning of the test problem investigated in
the text and in Table I (F = 10 kN, L = 200 m, and Y = 210 GPa).

and in the limit f → 0, LG,i is approximated by

LG,i ∝ √
LG,i+1LG,i−1 for 2 � i � G − 1. (37)

The analysis above assumes that on all length scales elastic
failure is the active failure mode. Plotted in Fig. 5 is the
slenderness ratio for the smallest beams and the minimum
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FIG. 5. Variation of both the aspect ratio for the smallest beams
and the minimum aspect ratio of all (sub)frames for generation-1
to generation-3 with respect to the loading parameter. Shown is
the increasing aspect ratio as the loading for which the structure
is optimized is decreased.

TABLE I. The optimal parameters for both a hollow and solid
construction hierarchical frame. The loading for which this frame is
optimal is F = 1 kN, ν = 0.29, Y = 210 GPa.

Generation nG,G nG,G-1 nG,G-2 Mass (kg)

Hollow-0 1421
Solid-0 7.9 × 104

Hollow-1 44 487
Solid-1 140 2920
Hollow-2 22 22 439
Solid-2 46 47 1790

Hollow-3 13 14 14 533
Solid-3 23 23 24 2180

aspect ratio of all the space frames in the structure, as defined
by the expressions

sG,0 ≡ LG,0

r
, (38)

min
i>0

(sG,i) ≡ min
i>0

dG,i

LG,i

, (39)

where dG,i is the maximum distance of any material making
up a space frame of length LG,i from its neutral axis. As
the loading parameter becomes smaller, the slenderness ratio
increases, thus, it is likely in the regime where maximal gains
from the hierarchical construction are found, the elastic (as
opposed to plastic) failure mode is dominant.

III. FRACTAL DIMENSION

The structures described above are hierarchical over a cer-
tain range of length scales. Within this range, one can calculate
an effective Hausdorff dimensionD through considering the
self-similarity of the structure at different hierarchical levels.
It is found that it is dependent on nG,i and is given by the
following expression:

D = 2 log10[6(nG,i + 1)]

log10

(
2
3

) + 2 log10(nG,i + 2)
. (40)

The values shown in Fig. 6 are confirmed through a box-
counting technique. The box-counting method is used with a
set of cubes with a side length of 2r or dG,i , where i ∈ [1,G]
[dG,i takes the same values as in Eq. (39)]. For small enough
box sizes (below the range of length scales where the structure
is hierarchical), a structure optimized for a finite force will
have a Hausdorff dimension of 3. For suitably small but finite
values of loading, however, the set {dG,i} will yield a nontrivial
Hausdorff dimension. As a result of the variation of nG,i with i,
the fractal dimension of the optimal structure described above
is not a constant over all length scales. The upper and lower
bounds for the fractal dimension can, however, be found. These
bounds are shown in Fig. 6 where they are plotted against
the loading parameter for which the structure is optimized.
A suboptimal structure with a constant Hausdorff dimension
could be created by setting nG,i = nG,G ∀ i, where nG,G is
taken from the optimized structure. Such a structure, with t

and r taken from Eqs. (26) and (27), respectively, would be
stable for loading greater than f and would attain the upper
bound in Hausdorff dimension shown in Fig. 6. In the limit of
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FIG. 6. The fractal dimension for the optimal structure plotted
against the loading for which the structure is optimized. The bar
shows the variation of the Hausdorff dimension over all appropriate
length scales while the circle shows the average Hausdorff dimension
of the structure. Discontinuities in dimension represent transitions of
optimality from one generation to another.

f → 0 it is seen from Eqs. (29), (30), and (40) that the limit
of the fractal dimension tends to 1.

IV. FABRICATION OF HIERARCHICAL STRUCTURES

With the development of novel fabrication techniques
the engineering challenge in creating these structures is not
insurmountable. In most terrestrial applications, it is found
that the optimal level of hierarchy, for this structure, will not
exceed 3. This puts some restrictions on, but does not negate,
the engineering challenge.

We have fabricated fractal compression members using
a modified EnvisionTEC Perfactory R© type III minisystem
from a photosensitive polymer, EnvisionTEC R05 [17]. This
mask-projection based photopolymerization system has a
2800 × 2100 pixel digital light processing projector allowing
a resolution of 5 μm. The structure shown in Fig. 2 was first
modeled in three dimensions (3D) as a stereolithography (STL)
file [26], before being split into numerous thin layers and
stored as a job file using Perfactory RP proprietary software.
These layers are visible in the final manufactured structure
(see Fig. 2). Light with a wavelength approximately 475 nm
is then passed through the projector and focused onto the
resin surface for polymerization of the exposed areas. The
sample is then washed using ispropanol in an ultrasonic bath
and left to dry. A postcuring procedure is followed using
an EnvisionTEC Otoflash System to harden the material.
An alternative material, EnvisionTEC RC25 (Nanocure),
has also been used to create frames of the same geometry
using the same fabrication procedure but without the necessity
for postcuring [17].

The structure shown in Fig. 2 is a generation-2 hierarchical
frame with n2,1 = 5 and n2,2 = 4. The smallest beams in the
structure have radii of approximately 0.15 mm and lengths of
1.35 mm. The layer thickness of the growth was 25 μm.

Mechanical testing of the structure presented here has been
undertaken [17] and good agreement between the structure’s
performance and finite element simulations is found. It is noted
that, in this case, the bending moments induced at the beam

ends due to deformation result in failure at lower loads than
predicted in the theory presented here. It is also noted that the
“slender beam” approximation used here is not well met by
structures fabricated to date.

V. CONCLUSIONS

We have shown that, through a hierarchical design principle,
a highly efficient compression bearing structure can be created.
Analyzing all possible modes of failure, at each length scale,
we have shown that the scaling of volume of material required
for stability against a given loading can be systematically
varied in an advantageous manner. We have shown that
the use of hollow, rather than solid, beams changes the
scaling in a manner analogous to increasing the generation
number by 1. More generally, it is noted that for hierarchical
structures optimized for gentle compressive loading here and
in Refs. [14,27], a structure with n characteristic length scales
of failure obeys a relationship of v ∝ f

n
n+1 . We have also

shown the dependence of fractal dimension of the optimal
structure on the applied load at failure. The dependence on
loading of the optimal number of levels of hierarchy for this
structure has also been obtained.

Further optimization of the structure is possible: At every
hierarchical level, there exist two different loading conditions
for beams or subframes under compression. Despite this, in the
work presented here, all beams and subframes at a particular
hierarchical level are equivalent; variation of the subframe
characteristics, optimizing each one for its particular loading,
would result in a more efficient structure.

The use of these hierarchical structures will be dependent
on the cost of production and the robustness of the structure in
their intended use. The potential trade-off between mechanical
efficiency and robustness of hierarchical structures must be
investigated further. It is noted that the structure presented
above is minimally rigid. Thus, for this particular structure,
modeled with freely hinged joints, removal of a single beam
(or subframe) will result in collapse of the structure at all
larger length scales. In the case of non-freely-hinged joints,
some rigidity will be maintained, however, a transition from
stretching to bending dominated regimes will occur.

Finally it is noted that the smallest possible building blocks
for these hierarchical designs are single and multiwall carbon
nanotubes. It has been shown that both Koiter and Euler
buckling of these tubes are closely approximated by Eqs. (1)
and (6), up to a prefactor in the case of multiwalled carbon
nanotubes [28]. Thus it is expected that the analysis shown
previously will still hold. Alternative structural elements
include hollow nanotubes constructed through atomic layer
deposition [29]. Ultimately, molecular self-assembly may offer
a fabrication method for these intricate hierarchical materials
with structural features from the nanoscale up [30,31].
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