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Abstract
We study spin systems on Bethe lattices constructed from d-dimensional
hypercubes. Although these lattices are not tree-like, and therefore closer to
real cubic lattices than Bethe lattices or regular random graphs, one can still
use the Bethe—Peierls method to derive exact equations for the magnetization
and other thermodynamic quantities. We compute phase diagrams for ferro-
magnetic Ising models on hypercubic Bethe lattices with dimension d = 2, 3,
and 4. Our results are in good agreement with the results of the same models
on d-dimensional cubic lattices, for low and high temperatures, and offer an
improvement over the conventional Bethe lattice with connectivity k = 2d.

Keywords: lattice theory, phase transitions, probability theory

1. Introduction

Lattice spin systems are idealized mathematical models of magnetic materials. In the absence
of external disturbances such systems are in equilibrium, and governed by the Gibbs—
Boltzmann distribution P (s) = e #£¢)/Z, where E(s) is the energy (or Hamiltonian) of a
micro-state s € SV, = 1/kpT is the inverse rescaled temperature, and Z = ZJ e PEW) jg
the partition function. If the set S of individual spin states is continuous, the sum in Z
becomes an integral. The averages of macroscopic functions of micro-states (observables),
such as the total energy or the magnetization, can be obtained by differentiation from the free
energy F = —T log Z, which is related to the internal energy U = (E (s)) = Z‘Y P(s)E(s)

and the Gibbs—Shannon entropy S = —ZSP(S)log P(s) via the thermodynamic relation
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F = U — TS. However, computing F' analytically for an interacting system of macroscopic
size is difficult, and to date only few lattice spin models models have been solved exactly [1].

To circumvent the above problem one often approximates the true micro-state dis-
tribution P(s) with a simpler alternative R)(s), which retains only some characteristics of the
original model. This approximation can usually be interpreted as a deformation of the true
topology of the lattice such that short loops are removed and the analytical computations of
thermal averages become easier, in combination with a variational approach that utilises the
inequality ZY R(s)log[R(s)/P(s)] > 0. The variational mean-field (v-MF) approximation,
see e.g. [2], ‘uses the probability distribution R)(s) of a non-interacting system in this
inequality. For N — oo its results are equal to the results of exactly solvable (ferromagnetic)
spin systems on complete graphs [2], but for d-dimensional lattices they are unreliable. It
predicts incorrectly, for instance, a phase transition in the one-dimensional Ising model.
However, its predictions for critical exponents are correct for ferromagnetic spin systems
when d > 4; see [3] for a unified proof of this result and references to relevant earlier work .

In the Bethe—Peierls (BP) approximation (also known as belief propagation in computer
science [4], or the cavity method in the spin glass community [5]) one replaces the original
lattices by tree-like graphs, which enables a recursive computation of thermal averages. One
such graph is the Bethe lattice [6], usually defined as the ‘central’ part of an infinitely large
Cayley tree [1]. Closely related to the Bethe lattice is the random regular graph (RRG),
defined as a maximally random graph in which all vertices have the same degree [7, 8]. RRGs
do have loops, but these are typically of length O (log N) as N — oo, so RRGs are locally
tree-like. For ferromagnetic models, Bethe lattices and RRGs give the same results [9], but in
antiferromagnetic and spin-glass models the loops in the RRGs generate frustration, and can
not be ignored [5]. The BP approximation is more reliable than the MF approximation [10],
since it involves a less brutal deformation of the original lattice, and it is exact for ferro-
magnetic Ising models on locally tree-like random graphs [11]; it is interesting that, despite
the fact that they can be solved relatively easily, the behaviour of Ising models on trees is
more complex than in d-dimensional lattices [12]. Further improvements of the BP approx-
imation were obtained by correcting the BP solution for rare loops [13, 14]; the improved
theory is exact for a Bethe lattice with exactly one loop [13].

In this paper we study spin models in which not only the correct coordination numbers of
d-dimensional cubic lattices are retained, but (unlike the v-MF, BP, and RRG approxima-
tions) also the statistics of short loops and many of their nestings. The spins in our models
occupy the vertices of Bethe-type lattices constructed from d-dimensional hypercubes, i.e.
from the cells (squares, cubes, etc) of the conventional d-dimensional cubic lattice. These
hypercubic Bethe lattices can be seen as generalizations of Husimi lattices [15], which are
Bethe lattices constructed from loops such that no edge lies in more than one loop. We use the
BP method to derive equations for the average magnetization, the specific heat, and the
internal energy per spin. From these we compute phase diagrams for the ferromagnetic Ising
version of the model with d = 2, 3, 4. Our phase diagrams are compared with Onsager’s
exact result for the d = 2 square lattice, and with high- and low-temperature expansions and
Monte Carlo (MC) simulation results for cubic lattices with d = 3, 4.

2. Spin systems on factor trees and the BP method

We know that the interaction topology of any spin system of size N can be represented by a
bipartite factor-graph G = (V, F) [16], with N = |V| variable-nodes and M = |F| factor-
nodes, in which the micro-state energy takes the general form
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Figure 1. The interaction topology of a spin system on a factor-tree rooted at factor-
node u. All spins are represented by circular ‘variable’ nodes, and each term in the
energy (1) corresponds to a square ‘factor’ node. A link between variable node ¢ and

factor node v implies that s, acts as an argument of E, (s).
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Figure 2. Central part of the square lattice (on the left), which is also the central part of
the hypercubic d = 2 Bethe lattice, and its corresponding factor graph representation

(on the right).

E(s)= Y E,(s).

veF

ey

Here we denote with s = {s; i € V} the microscopic spin state of the system, where s; € S
for all i. For Ising systems we would have S = {—1, 1}. A factor-tree is a special type of
factor-graph in which there are no loops, see figure 1. The energy E, (s) of each factor-node

3



J. Phys. A: Math. Theor. 48 (2015) 255001 A Mozeika and A C C Coolen

v € F in a factor-graph is a specific function of the states of a subset d, C V of the spins. We
denote similarly with 9; C F the set of all factor-nodes connected to variable-node i, i.e. all
energy terms in (1) that depend explicitly on spin i. Further examples of such systems are
given in figure 2.

From now on we will consider factor-trees only, as in figure 1. We denote with with u the
factor-node at the root of the tree. The full partition function Z of the spin system (1) on our
factor tree can be written as

Z=Ye Tt = Ze—ﬂEm)—/fzygw, Ey(s)
N s
= Z e PE.() H Z;(,;))[sjl )

{siica,} j€a,

Here Z P(,?) [§;] denotes the partition function of the sub-tree descending from node j, where j
descends from the root factor node g,

ZWVs;1 = H z e PE() H ZW1se1]: 3)

VEOD;\p se,t€0,\j tea,\j

Continuation of this argument gives similar expressions for any sub-tree function Z,fjr) [§] at
distance r from the root in terms of the sub-tree-functions at distance r + 1, using the tree-like
nature of the graph:

z01s1= ] > om0 I 25 sl “)

r€aj\v \ {seted;\j) t€9,\j

We can also calculate marginal spin probability distributions, starting from the top of the tree,
and find

e~ PEL(s) H;eaﬂ P(O) [SJ

P({sf’]ea”}): Z = (s)H poO s] )
{ $j €0y } JjEou W J
where we have defined the probability distribution
ZW s
PPLs)] = S ot (©6)

Plg)) [s;] is the marginal distribution of spin j in the cavity graph, that is obtained upon
removing the link from j to factor node u. It follows directly from (4) that also this distribution
can be computed recursively via

Hzeaj\p (Z{.?[,é’eaﬁ\j}e_ﬂEA(S) Hzeaz\] (’“)[sz])
Zf/ Hﬂe@j\v (Z sMeaA\j} e /D HZGM\, P(H])[ z])

PLS;)[SJ‘] =

>

(N
which is to be solved with boundary conditions {P,fjf”) [s;]1}. From (5) one obtains the
ensemble averages of energies and magnetizations in layer » = 0, i.e. for i € 9, via
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(o)=Y P({s»)€a))Ew, 8)
{sj,jez)“}
()= P({si€a})s )
{spicon)

If in a homogeneous system, such as a regular ferromagnet, there exists an r’ such that
P;E;f) [s] = P¢[s] for all r < 7/, i.e. if the iteration (7) for the spin distribution on the cavity
graph has converged to an invariant measure P [s], this defines a region in the tree where all
factor-nodes and all variable-nodes have become equivalent. Any factor-node u and any
variable node j belonging to this region will contribute

—PE,(5) clg.
2fieo) B @O T, PeLs)]

—PEy(s) .
Z{s,-,jeaﬂ}e h Hjedﬂ PLs)]

e~ PEL(s) .
Z{s‘f,jedy}sle PEnG Hjeay P<Ls;

<Si> B - s c (11)
Dt sien) " Ty P71

to the total energy and the total magnetization, respectively. In inhomogeneous systems this
cannot happen; the above averages would involve solutions of (7) that would also depend on
the realization of the disorder, and one would have to turn to the population dynamics
algorithm [5] to average out this disorder.

For Ising spins, where s; € {—1, 1} we can write (6) in the following form, with para-
meters /,;(r) that in the spin-glass literature are known as cavity fields [5]:

(Eu(9) = (10)

eﬁs,-hm-(r)

PO[s;] = .
i 157] 2 cosh( B, (r))

12)
Using the identity ph,;(r) = %Z; s; log Pﬁ;) [s;] in the left-hand side of (7) gives us a

simple recursive equation for the cavity fields:

h(')— Zsjlog H Z o PEL OB Y, sehar+1) | (13)

a€aj\v \ {snted;\j)

The thermodynamics of homogeneous Ising systems of the type under consideration, where
all spins are equivalent, would thus be governed by the solution of

Zsj og [T | X e (14)

rgoj\v \ {setea;\j}

We can insert the solution of (12) into equations (10) and (11), and use the fact that for
homogeneous tree-like systems we could have chosen any factor node y as our root, so that
(10) and (11) must apply to all factor- and variable nodes. Hence we obtain for the energy

. o . 1
density E = N ZM (E,(s)) and the magnetization per spin m = N Zi(s,-).
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Z{ /€0 }Sie_ﬁE“(mﬁhZfew Y
SjpJE0u

Z e PELS)+ph Z_ie o Si
{ SjJEOy

(16)

m=%;

As a simple example we can recover from the above equations the known results for the
ferromagnetic Ising model on a Bethe lattice with connectivity k (see e.g. [5]). Here [d,| = 2,
|0j| = k, and E,(s) = —Js;s;, where i, j € d,. The cavity field equation (14) now reduces to

k-1
PBJss'+phs’'
== Yslog| T L
2p — 2 cosh(fh)

tanh~!(tanh (Bh)tanh (4J)). (17)
For the energy density (15) and the magnetization per spin (16) we find

R I o anh(B/) + tanh (g’ s
2 Z ePlss+ph(s+s') 2 1 + tanh(8J)tanh(fh)*’

2o ST b (B[ + tanh(BT)]

m = B . (19)
Z ePIss'+ph(s+s) 1 + tanh®(Bh)tanh(BJ)
Using (17) the latter equation can be rewritten as
m = tanh(phk/(k — 1)). (20)

For k € {0, 1, 2} the system is always paramagnetic (m =0). If k > 3 it is paramagnetic for
p < B but ferromagnetic (m # 0) for # > B, where . = J~! tanh™!(1/(k — 1)) is the critical
inverse temperature of the system [5].

3. Ising models on hypercubic Bethe lattices

We now turn to ferromagnetic Ising models on hypercubic Bethe lattices. These lattices are
constructed recursively from a single d-dimensional hypercube, by attaching exactly 2¢
hypercubes to its corners, thereby producing the centre and the first shell of the lattice (see
figure 2). The second shell is constructed by attaching 2¢(2¢ — 1) hypercubes to the ‘avail-
able’ corners in the first shell. This process of attaching d-dimensional hypercubes to
available corners is continued ad infinitum. We note that each vertex in the hypercubic Bethe
lattice is shared between two adjacent hypercubes, ensuring that each vertex is connected to
exactly 2d neighbouring vertices, exactly as in conventional d-dimensional lattices. To
minimize notation clutter we will from now on choose units such that J = 1, and transform
ph — h.
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Figure 3. Computations on the square Bethe lattice, i.e. the hypercubic Bethe lattice
with d = 2. Left: computation of the cavity fields. Right: evaluation of the marginal
probability P (s, ..., s3), using the cavity fields.

3.1. Hypercubic Bethe lattice with d = 2

Let us first study the simplest case of d = 2. Here the hypercubic Bethe lattice is constructed
from squares, see figure 2. Each square contributes

Erqq(s) = —(s081 + 8152 + 8253 + $350) (21)

to the total energy of the system. Using this in equation (13) gives us

| . e/f[s1+s152+szsg+sg]+h(r+1) Ej’:l S;
h(r) = > log d (22)

2{ ‘) AESHTRARH-]+h(r+1) Z;] 5
)

for the cavity field acting on a spin s, living in the rth shell of our lattice, see figure 3. If we

solve this equation from a distant boundary at r — oo, we obtain the following equation for

the cavity fields in the bulk of the system, describing the fixed-point of the iterative map (22):
e=3h 4 De=h 4 e=4-h 4 3eh 4 g4p+3h
e4=3h 4 3e=h 4 2eh 4 =4t 4 30 |

h=llog

> (23)

The cavity field & acts on the spins living in the central part of the square Bethe lattice, and
can be used to compute the probability distribution of the four spins interacting on the square,
see figure 3, being

ePlsostsisatsasytsisol+h ijo 5
P(sg, ..., 83) = - . 24)
el [5051+5152+ 5253+ 535 +h Z‘/_=0 5
50,51,52,53

Since our spin system is homogeneous, this distribution can subsequently be used to compute
the magnetization per spin @ m = Zs . PGso, ..., s3)50, the energy density
0 3

.....
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Figure 4. Energy density E, specific heat C and magnetization per spin m as a function
of the inverse temperature f in d = 2 lattices. Solid lines: square (hypercubic) Bethe
lattice. Dashed lines: regular (tree-like) k = 4 Bethe lattice. Dotted lines: the exact result
for the Ising model in d = 2 dimensions, with the critical inverse temperature

A= %log(l + /2) [17, 18] (vertical line in the left panel).

.....

details). The results are shown in figure 4.
The point 2 = 0 is always a solution of equation (23), and corresponds to the m = 0
parama%netic (PM) state. This solution becomes unstable at the critical inverse temperature

A= ) log (\/g - 2) ~ 0.360909, where a new solution & # 0 appears. This new solution

is stable for f > B, and corresponds to the m # 0 ferromagnetic (FM) state. The phase
transition at A is of second order (see figure 4).

We compare these results with those of the ordinary k = 4 Bethe lattice (18), (20), and
with the exact results for the two-dimensional ferromagnetic Ising model [17, 18]. We then
find that the transition point of our square Bethe lattice, i.e. 4 ~ 0.360909, is an improved

estimate of the critical point 4 = % log (1 +2 ) ~ 0.440687 [17] of the 2d Ising model,

compared to the estimate . ~ 0.346574 of the ordinary Bethe lattice. We also observe this
improvement over the ordinary Bethe estimates in terms of the average magnetization and the
energy density (see figure 4), when comparing these quantities to the exact results for the 2d
Ising model which are given by

f<B :m=0, E=-2 1+’<("_11co<)+1) (25)
K b3 2
B> B Zm=(1—K2)§,E=—2\/1+K(1;K]C(K)+%). (26)
T

Here x = sinh~2(2f3), and K (k) is the complete elliptic integral of the first kind [18]. Finally,
we note that the specific heat C of the square Bethe lattice has a jump at

1 . .. .
A= 7 log (\/g - 2) (see figure 4 and appendix A) this is in contrast to the conventional

square lattice where the specific heat is diverging at 4 = % log ( 1+2 ) This behaviour of
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the specific heat is also found in d = 3, 4 Bethe lattices (see appendix A for details) studied in
the next two sections.

3.2. Hypercubic Bethe lattice with d = 3

In the Ising model on the hypercubic d = 3 Bethe lattice, a cube, which one can regard as an
‘upper’ square (formed of variable nodes 0, 1, 2, 3) that is is connected to a ‘lower’ square
(formed of variable nodes 4, 5, 6, 7), contributes

E3qq(s) = —(so81 + 8152 + 5253 + 5053)
— (84855 + S58¢ + Se87 + $754)
— (8084 + 5155 + 5256 + 5387) 27)

to the total energy. Substituting this into (13) gives us after some straightforward algebra the
following equation for the cavity field A:
h= I In [ (Se—6ﬂ+h + 1263 4 7eB+5h 4 o=126-h 4 o6p=Th

2

+ 3e¥5h 4 4e5h 4 9e=3h 4 3ed=h 4 9e=2-3h

+ 1667 + 15e2+h 4 3e=0F=3 4 15¢=4~h 4 15e=2P+h

+ Qed+3h 4 e12ﬂ+7h)(elzﬁ—7h + 7ebp—5h

+ 9e#=3 4 12673 4 15e27h + 15e727h + S5e=6P=h

+ 15674+ 1 16e" + 9e2+3h e~ 126+h 4 3e=6P+3h

+ 3etth 4 9e2h+3h | feSh | Fedf+Sh 4 e6ﬁ+7h)_l]. (28)

The paramagnetic solution /2 = 0 of this equation becomes unstable at 4 ~ 0.206633, and for
B > B equation (28) has two h # 0 ferromagnetic solutions. Substitution of the the factor
node energy function (27) into equations (9) and (8) gives us the corresponding magnetization
per spin and the energy density:

m= (6e6ﬁ+6h — el2B-8h _ gabp—6h _ godf—4h _ ga—4h
— 62 — pe=2h=2h — 2e=60=2h 4 ge2+2h
4 Ge-2P2h 4 GadBHah 4 De-60+2h | gath | elzﬁ+8h)/j\/" (29)

E= _3(4e6ﬁ+6h + el28-8h 4 fabh—6h 4 gadf—4h 4 4o26-2h
+ 28 — 4722 _ 4e=6P-21 _ 10e~4 4+ 4e2h+2h
— Qe 242 4 fgedfrah _ 9e—128 _ ga—6p+2h 4 el2/}+8h)/N’ (30)
where

N =32 + 8eW+0h 4 120-81 1 8e6/=6h 1 2eH~4h 1 |6~
+ 242 4 6e + 24e 22 4 8emOP2 4 30~
+ 242 4 24e N 126444 4 D612 4 gem6/42h
+ 16e*! + e!2/+8h, 3D

In figure 5 we compare the above values for m and E with those of the simple tree-like k = 6
Bethe lattices and with the predictions (obtained via simulations and expansions) for the true

9
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Figure 5. Energy density E and magnetization per spin m as a function of the inverse
temperature f§ for d = 3 lattices. Solid lines: cubic Bethe lattice. Dashed lines: regular
(tree-like) k = 6 Bethe lattice. The results for the true Ising model in d = 3 dimensions
are low temperature data for m (dotted line) obtained by MC simulations in [19], with
the critical inverse temperature estimate 4 = 0.2216544 + 3 x 1077 [19] (arrow and

vertical line), predictions for E obtained from high temperature [20] and low
temperature  [21] series (both as dotted lines). The energy density
E = —0.99063 + 3 x 107> (horizontal line), assuming that A = 0.2216546, was

computed by MC simulations in [22].

d = 3 Ising model. Again we find that the hypercubic Bethe lattice is a more accurate proxy
for the true Ising system than the tree-like Bethe lattice with the same coordination number.
3.3. Hypercubic Bethe lattice with d = 4

The calculation for d = 4 is similar to d = 3 but more tedious. In the Ising model on the
hypercubic d = 4 Bethe lattice the tesseract (the d =4 equivalent of a cube in d=3) can be
viewed as a 3d cube (A) connected to another 3d cube (B) by eight edges. It thus contributes
to the total energy an amount

Esq0() = Eao(s) + Ep(s) + E4p(s), (32)
where

E\(s) = —(soAslA + slAszA + s2As3A + sOAs3A + sfsSA + s5As6A
+ sd'si + sitsit + sgtsdt 4 stsst + stsgt + S3ASA), (33)

Eg(s) = —(s(fslg + SIBSZB + szgsf + s(fgsf + sfsSB + SSBséB

+ 58P + sPsE + sPsf + P58 + sPsE + sfsf ), (34)
7

Eap(s) = = ) sisP. (35)
j=0

The resulting full equations for the cavity field 4, the energy density E and the magnetization
per spin m are given in appendix B. Bifurcation analysis around the trivial solution & = 0 of

10
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Figure 6. Energy density E and magnetization per spin m as a function of the inverse
temperature 3 for d = 4 lattices. Solid lines: hypercubic (tesseract) Bethe lattice. Dashed
lines: regular (tree-like) k = 8 Bethe lattice. The results shown for the Ising model in
d = 4 dimensions are obtained from low temperature series for E [21] (dotted line), low
temperature series for m [23] (x), and high temperature series for E [24] (dotted line).
The energy density at the critical point £ = —0.77053 + 4 x 107> (horizontal line) and
the critical inverse temperature 4 = 0.1496947 + 5 X 10~7 were computed in MC

simulations [25] (arrow and vertical line).

Table 1. Critical temperatures 7, = ﬂc"l of Ising models on true cubic lattices, hyper-

cubic Bethe lattices and k = 2d Bethe lattices, for d = 2, 3, 4. The values for the true
d = 2 Ising lattice and for all hypercubic and ordinary Bethe lattices are calculated
analytically. The values of 7, for the cubic lattice with d = 3, 4 are computed in MC
simulations (see captions of previous figures for references).

Ld=2 T.Wd=3) T.(d=4

True cubic lattice 2.2692 45115 6.6802
Hypercubic Bethe lattice 2.7708 4.8395 6.8794
k = 2d Bethe lattice 2.8854 4.9326 6.9521

the equation for the cavity field now reveals a second order transition from a paramagnetic
state (im =0, for f < 4) to a ferromagnetic state (m # 0, for g > 4) at f =~ 0.145361.

In figure 6 we compare the values found for m and E with those of the simple tree-like
k = 8 Bethe lattices and with the predictions (obtained via simulations and expansions) for the
true d = 4 Ising model. As was the case with d = 2, 3 we find that, although the differences
between the different model versions become smaller as d increases, also in d = 4 the
hypercubic Bethe lattice is a more accurate proxy for the true Ising lattice than the tree-like
Bethe lattice with the same coordination number.

4. Discussion

In this paper we introduced hypercubic Bethe lattices, which are constructed from the cells of
regular d-dimensional cubic lattices, and we analysed the equilibrium properties of spin
systems defined on such lattices. These topologies can be seen as a further generalizations of

11
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ordinary Bethe lattices, that, unlike tree-like graphs, retain many of the loops of the inter-
action topologies of more realistic spin systems.

We used the BP method to derive equations for the magnetization per spin and the energy
density for Ising spin systems on hypercubic Bethe lattices, using the factor-tree repre-
sentation. With these equations we computed phase diagrams for the ferromagnetic Ising
model on the hypercubic Bethe lattice with d = 2, 3 and 4. The results for the critical
temperatures are summarized in table 1, and compared with the values found for true cubic
lattices and for ordinary Bethe lattices. Hypercubic Bethe lattices are found to be more
accurate proxies for the true d-dimensional lattices than regular (tree-like) k = 2d Bethe
lattices, in terms of the predicted transition temperatures and the values of observables.
However, for d > 4 one finds, as expected, that the differences between the predictions of all
three models become increasingly small. We expect that for N - oo the hypercubic Bethe
lattice is equivalent to its random graph version, which is a maximally random
graph constructed from hypercubes, and with vertices of equal degree, at least for ferro-
magnets [9].

Our results for the Ising model were obtained by computing the sums in the
equations (10), (11), (13) directly. However, even for the hypercube in d = 5 (the penteract)
this involves O (232) summations (since the number of corners in the d-dimensional hypercube
is 2¢), which although in principle easy becomes painful in practice.

One interesting future direction following this work would be to consider the one loop
correction method of [13], which was introduced and used to improve the Bethe (k = 2d)
estimates for the critical temperature of the ferromagnetic Ising model on the d-dimensional
lattice. Generalization of their method to the hypercubic Bethe lattice may further improve our
estimates of 7. In addition it would be interesting to study a spin-glass on the hypercubic
RRG; the spin-glass model on loopy graphs, to the best of our knowledge, was studied only
for the Husimi lattices [26, 27] and for a single d-dimensional hypercube [28] in the limit of
large d. The non-negligible frustration in spin-glasses on random graphs is due to the presence
of long O(N) loops [5], but in our present model it would already enter via the short loops that
are present.
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Appendix A. Ising models on hypercubic Bethe lattices: specific heat

Using the energy (1) in the definition C(T') = aiT(E (s)/N) gives us the specific heat (den-
sity) equation

e =~ D[ (E20) - (o)) (A1)

veF

or equivalently

1 0

CPH =~ —P—(E®). (A2)
N veF aﬂ

The Ising model on a hyper]c‘}[lbic Bethe lattice is a homogeneous system, i.e. all its nodes are

equivalent, so (E(s)/N) = F<EO (s)), where M = N2!= and

12
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—pEo(s)+h ) s/
Z{s/}EO(S)e ' z'] '

(Eo(s)) = SISO (A3)
{s;} )

The magnetization m = % Zil\:l(s,-) = (sp) is given by the equation

m= . (A.4)
Z{ . e ~PE0(s)+h Z, 5

J

and the cavity field /4 satisfies the equation
1 ,
- - —BEy(s)+h j
h=fy0 =3 >0 log (Z{S/_}e QOLID L ) (A.5)
So

The magnetization and the cavity field are related by the equation
m = tanh(2h) (A.6)

which follows from the equations (A.4), (A.5) and the equality tanh™'(x) = % log i + x)
—x
valid for x € (—1, 1). Using the equations (A.3) and (A.5) in the formula (A.2) gives us the

specific heat

Cp) = —2l_dﬂ2%<Eo(s)>
= zl—dﬂz{ [<E02(s)> _ <E0(s)>2]
_; [ <E0(S)Sj> — (Eo(s)) <s]>]%} (A7)

Let us now assume that Ey(s) = Ey(—s) (this property is satisfied in our model) and
consider

Jy(=h)= % ZS() log ( Z{ 51} e PEW=h Y Sf)
» J

= % ZSO log Ze_ﬁEO(_S)_h pUL
50

{s;}

1 s 5
=5 Do log[ PO L) = —f, (). (A8)
S0 {s;}

Thus fj (h) is an odd function of 4 and hence & = 0 is a solution of the cavity field
equation (A.5). Furthermore, let us assume that Ey(s) is ferromagnetic, i.e.
Ey(s) = —ZA Jasa (A is a set of indices and s4 = HIEA s; with J4, > 0), and 2 > 0O then
T (h) is a monotonic non-decreasing function of 4. To show this we first note that

Pl + 1])

gy (A.9)

@@zém(
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Z{s»} e PECO+R Y 5
P so] = d (A.10)

Z~ Z i e—[}EO(s‘)+hZ#O§,»
S0 {S,‘}

and P¢[so] = %[1 + 50 (50 ). ], where the average (---). is generated by the Boltzmann weight

e~PEo(s)+h Z#O Si then

1 [T+ {s)) 1 9
fﬁ() 210g[1—<S0>L]_ =

2 Z[<sos,> - so)c<sj>c]. (A.11)
- . 70

Secondly the inequality (sos;). — (So)c(s;) = 0 is true by the Griffiths—Kelly—Sherman
(GKS) theorem [29] and hence %fﬁ (h) 2 0. For h = 0 the cavity magnetizations
(s0). = tanh(h) vanishes and 6%fﬂ (h) = Zj 40 (508 ). Furthermore, the gradient of fj (1) at

h = 0 is a monotonic increasing function of f. This follows from the calculation

op ahff’( =X op (soss),

J#0

= Z[—(soson(s) >C + <sosj >C (Eo(s)>c]
j#0

= ZZJA[<sosjsA >C — <s0sj >C (sA >C] >0, (A.12)
j#0 A

where the inequality is true by the GKS theorem. For a d-dimensional hypercube we have that
. 0
d —
0< Z#()(sosj)c < 29 — 1 and hence there exists 4. < oo such that afﬂ M| =0 =1and
the paramagnetic solution 7 = 0 becomes unstable when f = f. If the function fj(h) is

convex in & then for > f there is a unique (up to i — —h) stable solution || # O of the
cavity field equation (A.5) which corresponds to the ferromagnetic m # 0 phase. For d = 2

this solution for g > f = —i log(+/5 — 2) is given by

\/esﬁ — 26 — 1 + Ve!% — 4e1% — 2e% 4 de¥ 4 |

h = log 73 o2 s

(A.13)

but for d = 3, 4 we were able to obtain these solutions only numerically.
It follows from the equation (A.7) that in the paramagnetic phase (% = 0) the specific heat
is given by the equation

Cp) = 21"’ﬁ2[<E02(s)> - (Eo(s))z]. (A.14)

and that it is bounded on the interval g € [0, 4]. For g > B the system is in the
ferromagnetic phase (2 # 0) and the specific heat is given by the equation

14
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cp =2 { [ (E30) - (Eo(s))’]
_Z[<Eo(s)s,-> — (Eo(s)><sj>]%}. (A.15)

Let us consider the last line of the above equation. The correlation
—[ (Eo(s)sj) — (Eo(s))(sj)] = ZA JA[ (sasj) — (sA)(sj)] is bounded and positive (by the
GKS theorem [29]). Furthermore, it follows from the magnetization equation (A.6) that the

. . 0h Om
derivative — = ————
B 9B 2(1 — m?)
p) but is not necessary bounded. For d = 2 it diverges as f — /}:, but the limg_, 4+C (f)
=log?(\/5 — 2)(1956577837718+/5 — 4375041048407)
/(1182573459758+/5 — 2644314644406)~2.283 is bounded and as S — B the

limy_4-C (B) = log? (/5 — 2)(1203 — 538\/§)/(110\/§ — 246) ~ 0.293, so the specific
heat has a jump (see figure 4) at §. = —i log(+/5 — 2). The specific heat C () is bounded for

any finite d as # — B (this follows from the equation (A.14)), but for § — [}CJ“ we were able
to verify this behaviour (as in figure 4) only numerically in d = 3, 4.

is also positive (m is a monotonic non-decreasing function of

Appendix B. Formulae for Ising models on hypercubic lattices with d = 4

For d = 4 the formulae for the cavity field 4, the magnetization per spin m and the energy
density E become, respectively,

h=21n [ (2646515 4 64e=5+12 4 60! %~Th 4 39¢8-11h
2

+ 18489 4 215e80-7h 4 36el26-5h 4 §20e4h-Th
T+ e240-15h 4 4o208—13h 4 |1e-13h+168 4 1gel6p—11h

+ 61909 4 48e12P=11h 4 28I2f=3h 4 57¢-9 4 4el6f—h
+ 1449 4+ 684~ 4 273e8/-3" 4 1098e~"

+ 840e=¥+4 + 384681 + 1406~ + 36!+

+ 390" + 1610e=3" + 40e~8/=7h 4 588e~4/=5"

+ 800e*~" 4 2178e™" + 351e%+h 4 288e~8/-5

+ 1372e=4—3h + 1080e4P+" + 60e!24+3h + 609e—80—3"
+ 1632e™"=% + 2070e" + 440e3+3" + 1140e*/+3"

+ 132e!28+5h 4 21e=168=5h 4 224e=126-3h

+ 105668 + 1764e"=* + 18303

+ 473e80+5h + 18el6A+7h + 24e=12-5h + 78386
+288e7120-1 4 980314 4 1144e%+5h 4 192e!2+7h
+ 724830 4 6Qe-16—h 4 30e=208—h 4 DgReh—125

+ 480635 4 858e7 4+ 552e8+7h 4 7gel0F+Oh

+ 308e3h4F 4 432e4P+7h 4 208e! 2P+ 4 4()e—12+3h

4 28c208+11h 4 o=32p—h 4 Qe=24f+h  3503h—16p

+ 88e~80+5h 4 40a—168-3h 4 54a=16p+h 4 ¢326+15h
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+ 1717 + 169e8+% 4+ 77e166+11h 4 15624ﬁ+13h)
X (4736_5h+8ﬁ + 208e~9h+126 4 192e128-7h 4 1698/~

+ 55268770 + 13212750 4 432e4-Th 4 7716/ 11A
+ 78e!9/79 4 60e! 3" + 351e%~" + 1080e* "

+ 11444751 4 4408731 + 85875 + 11403+
+ 171" + 1830e™" + 308¢~#~5"

+ 20707 + 384¢8+ + 88e~8=h 4 9804~

+ 800e*/*" 4 273843 4 10565

+ 28e! 3 4 480e~H 73 + 176467 4 2178e"
+ 840e*H3 4 36e!20+5h 4 40e=12-3h

+ 783e 188 + 1632e" % + 1610e>" + 264e8/+h

+ 35¢7100=3" 4 288e~ 12~ 4 1372e34 4 684eH+N
+ 60e!2P+7h 4 54¢7160h 4 D8RI

+ 60e™'h 1+ 609e3 + 1098e™" + 215¢8+7h

+ 6el0B+9h | [Rel6f+11h | falOB+h 4 Dpa—125+5h

+ 588e54 4 52047 4 64e!2 M 4 224712+
+ 42e3=168 4 288e~8/+h 4 39067 4 1848+

+ Qe=24P~h 4 30e=20p+h 4 o326=15h 4 |5o24f~13h

+ 2862001k 1 40e7h=8 4 579 4 39e¥/+11

+ 36e!2=h 4 11el68+13h | o=32+h | 7a-24p+3h

+ ZleSh—lﬁﬁ + 48612ﬂ+llh + 18el6ﬂ—7h

+ 14074 4 1440490 4 420013 eZ4ﬁ+15h)_l] (B.1)

m= (_ 12e—166-2h 4 12el65+8h _ ga—126=4h 4 60el64+10h

+ 174e21780 4 24e200+121 7304 4 2588/ +6h

+ 486—8[}+6h + 26_24ﬂ+2h + ]4e4h—16/3 + 11468h + 13068[1+10h
+ 66e!0/+121 4 300e4h=4 1 624e4P+0h 4 128e!2/+8N
+ 12e7168+2h 4 192e4-80 4 468e%" + 64e2~12F

+ 14e24p+14h + 168e6h—48 + 16e~128+4h

+ 288e45+8h + 160e!28+101 + e32p+16h

— @326-16h _ 1424141 _ 24e20p—12h

— 66e~120+166 _ 6()el6h—10h _ 19a165—8h

— 160e!26-10h _ 128c126-8h _ 176e—41+8p

— Rel26-2h _ 130e86—10h _ 368868

— 72e!2$-6 — 258¢86-6h _ 4¢126-4h

— 114e78h — 624e4$0h _ 288e4-8h _ 468e~6h

— 456484 _ 730e~4h _ 78e80-2 _ 48840k

— 392e~4-4 _ 240e~2+4F — 46062 — 168e~ 0k
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+ 8612/3+2h _ 1926—8[5—4h _ 3926_4ﬁ_2h + 7868[;‘+2h

+ 240e4ﬂ+2h + 24el2ﬁ+4h _ 14e—l6[f—4h _ 1746—8ﬁ—2h

— 6de= 122 4 46062 + 176e3+4 + 392e2h—4F

+ 456648+ 4 7el2hH6h _ 9e=24p=2h 4 368e8ﬂ+8h) /N (B.2)

E= _4( 12e246+14h 4 o32p+16h 4 o326—16h | 1a24h—14h

+ 20620/;’—12/: + 446—12h+16/} + 48616ﬂ_10h + 12616/}—8!1
+ 96e!2P-10h | 9pel2h=8h | 50e80— 100 4 |84e8H-8h
+ 72e!2-0h 4 172e80-6" 4 36e!2—4 4 2(08e* O

+ 176e=*1+80 4 24e126=2h 4 4e10F 4 72e4/-8h

+ 228e¥~4 4 156e8F—2 — 302e-8-61 _ 196e=4—4h
+ 240e~21+40 4 192e%F — 56e4~0" 4 200e

+ 24¢!2P+2h _ 192e=80—4 _ 390e=4P-2h 4 156¢8/+2h
+ 24oe4ﬁ+2h + 36612ﬂ+4h _ 286—16[}—4h _ 3486_8ﬁ_2h
— 192e™128-2 _ 408e=* — 528e=% 4 1768+

— 392e2—4 4 228e4+4h 4 72el2+0h 4 172e85+6h
+ 12616ﬂ+8h _ 246—12ﬂ—4h _ 486—16/3—2}1 _ 2166_12ﬂ
— 348e2—8F — 196e*h=4 4 208e*+0" 4 96e!2P+8h
— 12e240-2h _ 60e~19F — 40e~20F — 192¢2h—125

_ 486—16ﬁ+2h _ 19264h—8/3 + 18468ﬂ+8h + 48816ﬁ+10h
_ 5666h_4ﬁ _ 246—12/}+4h + 7264/}+8h + 96612ﬁ+10h

+ 20620/3+12h _ 26—32/3 _ 126—24ﬂ+2h _ 2864h_16ﬂ

— 3278460 | 5084100 4 44616ﬂ+12h)/./\f (B.3)
with the normalization factor

N =4356 + 96e~16/-2"  24el0h+8h 4 g4e=126-4h
+ 1392e21=80 4 322004121 4 2928e 4 6888/ +6!
+ 128e84+61 4 16e=24/+2h 4 56e41-16/ 4 228ed!
+ 208e¥/+100  8Rel6/+12h 1 1568644 + 1664¢4/+6h
+ 256¢!2/+8h 4 96e~100+2h 76848 4 12485
+ 512e2h—12p’ + 16e246+14h + 44866h—4ﬁ + 646—12ﬁ+4h
+ 576e46+8h 4 256e126+10h 4 o326+16h 4 o32p—16h
+ 16624/}_14h + 32620/}—12h + 886_12h+16ﬁ + 96el6ﬂ—10h
+ 24e!68=8h 4 25612100 4 25612681 + 704e~41+8F
+ 64e!2=2h 4 208e8 100 7368348 1 192¢126-6h
+ 688e¥/-6" + 96e!2/=4 4 228678 4 166464 -0h
+ 5762478 + 1248e76" + 1824e~4 + 2928¢™4
+ 624e¥72 4 128e780-6" + 15684~ + 1920e~2+48
+ 368072 + 448e~4=6h 4 64e!2P+2h 4 768e~8/—4h
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+ 3136e 42 4 624e8+2h 4 1920e+2h 4 96e! 2P+

+ 56e~100=4" 4 1392e8/=2 4 512¢~126-2h 4 36802

+ 70484 4 3136214 4 1824e*P+4h 4 192¢!2+0h

+ 16e™240-2h 4 736e80+8h 1 576120 4 2e—3%

+ 64e72% 4 8el% 4 768e% + 1600e*’ + 3264e~4

+ 2112e™% + 120e1%/ + 96el0f+10 (B.4)
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