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How much can we influence the rate of innovation?
T. M. A. Fink1* and M. Reeves2

Innovation is how organizations drive technological change, but the rate of innovation can vary considerably
from one technological domain to another. To understand why some domains flourish more rapidly than
others, we studied a model of innovation in which products are built out of components. We derived a conser-
vation law for the average size of the product space as more components are acquired and tested our insights
using historical data from language, gastronomy, mixed drinks, and technology. We find that the innovation
rate is partly influenceable and partly predetermined, similar to how traits are partly set by nurture and partly
set by nature. The predetermined aspect is fixed solely by the distribution of the complexity of products in each
domain. Different distributions can produce markedly different innovation rates. This helps explain why some
domains show faster innovation than others, despite similar efforts to accelerate them. Our insights also give a
quantitative perspective on lean methodology, frugal innovation, and mechanisms to encourage tinkering.
INTRODUCTION
Innovation drives technological change (1–4), but the rate of inno-
vation can vary markedly from one technology to another (5). For
example, Moore’s law implies an increase in computational speed of
40% per year, and the cost of photovoltaic modules has decreased 10%
per year, but the price of coal has remained roughly constant (6).
While some research has been done on the origin and propagation
of innovations (7–11), it remains unclear what causes some domains
to progress more rapidly than others (12, 13). Is the pace of techno-
logical change set by human intervention, or does each particular do-
main have its own intrinsic rate?

On the one hand, modeling and the analysis of interventions sug-
gest that different innovation rates are man-made: the result of good
or bad strategic choices (14, 15). Models of economic complexity
(16–21) indicate that countries can influence the range and quality
of products they produce by the capabilities they invest in. Compo-
nent models of innovation (22–25) imply that firms can affect the
space of products they can make by their choice of building blocks.
At the level of individual products, lean methodology (26) aims to
shorten product development cycles by iterative learning, and frugal
innovation (27) makes technologies more accessible by simplify-
ing them.

On the other hand, long-term historical data suggest that differ-
ent innovation rates are intrinsic: the result of inherent properties
specific to each domain. An analysis of record-breaking innovations
implies that different domains have persistent and forecastable behav-
ior (28). A study of 53 technologies from the Santa Fe Institute’s
Performance Curve Database and elsewhere suggests that the technol-
ogies follow a generalized version of Moore’s law, but at different rates
that depend on the technology (6).

In prior work (22, 23), we studied how the innovation rate depends
on the order of components adopted. Here, we study the other side of
the coin: the extent to which the innovation rate is intrinsic to each
particular domain. While the choices that organizations make play an
important role in determining their success, we find that this is
countered by an intrinsic innovation rate specific to each domain.
These opposing forces are reminiscent of nurture versus nature in hu-
man traits.

Here, we do three things. First, we study data from four domains:
language, gastronomy, mixed drinks, and technology. In each domain,
we measure how the number of makeable products (words, recipes,
cocktails, and software products) grows as we acquire new compo-
nents (letters, ingredients, beverages, and development tools). We
do this for an arbitrary order of component acquisition and the aver-
age over all possible component orderings. Second, we prove a con-
servation law for how innovation occurs through time: The average
size of the product space times a complexity discount is constant over
every stage of the innovation process.We use this law to forecast the size
of the product space in the future based on the complexity of the
products we can make now. Third, we show that the growth of the
average product space depends only on the distribution of product
complexity and not on details about which components make up
which products. Front-loaded complexity distributions—those that
have a lot of simple products, the average product complexity being
equal—have much higher innovation rates. We apply our insights to
lean methodology, frugal innovation, and tinkering.
RESULTS
Lego game
Let us illustrate the problem with Lego bricks. Consider two differ-
ent Lego sets: a Star Wars set and a castle set. The Star Wars set can be
used to make a variety of spaceship toys. All of these toys are equally
complex, with the same number of bricks in each. The castle set, on
the other hand, can be used to make some simple toys, such as Lego
men with swords, and some complex toys, such as a knight’s castle
made from walls, windows, ramps, and other parts. In both sets, the
average number of bricks per toy is the same. In the Star Wars set, all
of the toys are moderately complex, whereas in the castle set, some
toys are simple, many are moderate, and a few are complex.

Now, imagine that Carol is playing with the Star Wars set and
that her friend Dan is playing with the castle set. Both have the same
goal: to make as many different toys as possible. In the morning, Carol
patiently collects wings, thrusters, and guns but is not able to actually
complete any toys. Dan, on the other hand, makes many simple toys
early on. By lunchtime, things are not much better for Carol. She can
make a few toys, but Dan has further outpaced her. Only as the day
ends and both players acquire all of their bricks does Carol’s luck
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change, and she finally catches up with Dan. Dan was able to make
more and more toys throughout the day, whereas Carol could hardly
make any until the end of the day. Dan enjoyed playing at every stage,
while for Carol, play seemed like work because she saw little return on
her efforts until the end. As we shall see, the contrast in their perform-
ances does not reflect the players themselves but rather is inherent to
the Lego sets they used.

Components and products
In the same way that Lego toys are made up of distinct bricks, we take
products to be made up of distinct components (2, 3, 29–33), that is,
“a combination of components to some purpose” (3). A component
can be a material object, such as a touch screen, or a skill, such as
coding in Java, or a routine, such as a client survey. Once we have
access to a component, we do not have to worry about running
out; there are no capacity constraints. Any subset of our components
can be combined, but a combination either is or is not a product,
according to some universal recipe book of products. Suppose further
that there are a total of N possible components in “God’s own cup-
board” but that, at any given stage n, we only have in our basket n of
these N possible building blocks. At every stage, we pick a new
component to add to our basket, increasing n by 1.

Product space
The products we can make depend on the components we have in
our basket. For example, from the letters a, b, c, and d, we can make
10 English words: a, ad, add, baa, bad, cab, cad, dab, dad, and dB.
Adding e to the basket increases the number of words we can make
to 28; however, some letters are better than others in expanding the
word space. If we add f to the letters a to e, then the number of words
we can make goes from 28 to 46, but if we add l instead of f, then the
number jumps from 28 to 82. The order in which we acquire compo-
nents plays an important role in how fast the space of products grows.
In prior work (22, 23), we developed strategies for optimally choosing
the order of components. Here, we show that each domain is
predisposed toward its own intrinsic innovation rate.

Size of the product space
To study how the number of makeable products grows as we acquire
components,we gathereddata from four domains: language, gastronomy
(34, 35), mixed drinks, and technology (see Methods). We then did the
following experiment for each domain. Startingwith an empty basket, we
added to it, one component at a time, all of the N possible components.
After adding each one,wemeasured the number of products p(n) thatwe
could make, where n is the set of n components in our basket. We dif-
ferentiate between a specific set of components n and the number of
components n to highlight the dependence of p(n) on the particular
basket of components and not just its magnitude. For example, more
words can be made from the first five letters of the alphabet than the last
five letters. The size of the product space is shown inFig. 1 (points), where
we acquired components in alphabetical order. Acquiring them in a dif-
ferent order would give a different rate of growth.

Average size of the product space
To sidestep this dependence of the size of the product space on the
order of component acquisition, we need to take the average over
all possible orders in which to acquire components. But it is not pos-
sible to do this numerically even for moderate values of n, since the
number of orders grows as n!. To overcome this bottleneck, we de-
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rived a mathematical formula that analytically gives the exact average
(see Methods). Using this technique, we can compute the growth of
the average size of the product space,�pðnÞ, also shown in Fig. 1 (lines).
Whereas p depends on the specific set of components n, �p depends
only on the number of components n.

Complexity of products
To understand what determines the growth of the average size of the
product space, let us take a look at product complexity. The
complexity c of a product is the number of distinct components it
is made of. Multiple occurrences of a component count once, so that
the word “banana” has c = 3 letters, not 6. To be able to make a pro-
duct of complexity c, we need to have in our basket all c of its com-
ponents. We denote the number of makeable products of complexity c
by p(n, c), so that summing p(n, c) over c gives p(n). For example, of
the 10 words we can make from the letters a, b, c, and d listed above,
1 word contains c = 1 different kinds of components, 5 words contain
c = 2, and 4 words contain c = 3.

Conservation law for products
We discovered that there is a mathematical structure underlying how
the average size of the product space grows over time, which we prove
in Methods. It takes the form of a conservation law: �pðn; cÞ=ð nc Þ is
constant over all stages of the innovation process, where ð nc Þ is the
binomial coefficient. In other words, for two stages n and n′,

�pðn′; cÞ=ðn′c Þ ¼ �pðn; cÞ=ð nc Þ: ð1Þ

When n and n′ are much greater than c, we can approximate ð nc Þ andðn′c Þ by nc and n′c, and we find �pðn′; cÞ≃ �pðn; cÞðn′=nÞc. Let us try to
understand this intuitively. It says that the number of makeable
products at current stage n is not a good estimate of the number
of makeable products at future stage n′. The current number discounts
the future number by the factor (n/n′)c. The farther into the future we
look, the greater the distortion, but not all products are discounted in
the same way: Products with higher complexity c are discounted ex-
ponentially more. We call the factor (n/n′)c the complexity discount to
highlight this exponential dependence on the complexity. To correct
for this discount, we must amplify the current number of products by
its inverse, (n′/n)c, to obtain the correct estimate for the future.

Forecasting growth
We can use Eq. 1 to forecast the size of the product space in the
future from information we have about the present. Summing
�pðn′; cÞ≃ �pðn; cÞðn′=nÞc over complexity c, with x = n′/n, and
noting that the size of the product space is an unbiased estimate
of its mean, we find

pðn′Þ≃ pðn; 1Þx þ pðn; 2Þx2 þ pðn; 3Þx3 þ… ð2Þ

Equation 2 has the form of a polynomial in x = n′/n, where x = 1 is
the present time and x > 1 is some time in the future. The coefficient
in front of xc is simply the number of products that we can make at
current stage n that have complexity c.

For example, imagine that, in language, we only have access to the
first two-thirds of the alphabet, that is, we have in our basket the
letters a to q. From these, we can make 2800 words. Using Eq. 2,
we can forecast the number of makeable words when we have all
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26 letters, without knowing anything about what the new letters will
be. Evaluating Eq. 2 at x = 26/17, we predict 29,809 makeable words,
which, in log terms, is within 2.8% of the actual number. For gastron-
omy, mixed drinks, and technology, with the first two-thirds of the
components (arranged in alphabetical order) in our basket, we predict
the size of the product space to within 2.7, 1.4, and 0.4% of the actual
number. The further ahead we forecast, of course, the less accurate our
prediction becomes.

Specific complexity distributions
If we assume a specific distribution of product complexity, then we
can calculate�pðn′Þ explicitly. We evaluate three common distributions,
all with the same mean complexity �c: constant, binomial-distributed,
and Poisson-distributed product complexity (Fig. 2, D to F). Products
with constant complexity are like the toys in the Star Wars Lego set:
They all have a similar number of components. Products with Poisson
complexity are like the toys in the castle Lego set: Some are simple,
many are moderate, and a few are complex. We find (see Methods)
that the number of products we can make at stage n′ can be expressed
just in terms of x = n′/n and the mean complexity �c,

�pðn′Þ≃ pðnÞ⋅
x�c constant complexity;

1þ x
2

� �2�c

binomial complexity;

eðx�1Þ�c Poisson complexity:

8>><
>>:

ð3Þ

These three growth rates are plotted for�c ¼ 8 in Fig. 2 (A to C). They
are markedly different: Poisson complexity yields much faster innova-
tion than binomial complexity, which, in turn, yields much faster in-
novation than constant.

To test our prediction that different distributions of product com-
plexity lead to markedly different innovation rates, we did the follow-
ing experiment. We gathered together all of the 56,498 gastronomy
recipes and glued them together end to end to form a giant list of
ingredients. We then cut this giant list into pieces with sizes different
from before to make new recipes. This is similar to how we might tear
up a long sentence, disregarding spaces, to make new imaginary
words. We did this three times, choosing the sizes of the pieces to have
one of the three distributions: constant, binomial, and Poisson. All
three distributions have the same mean recipe complexity �c ¼ 8. This
experiment, further described in Methods, preserves the frequency of
the different components in the original recipes. We compare the
Fink and Reeves, Sci. Adv. 2019;5 : eaat6107 9 January 2019
results (points) with Eq. 3 in Fig. 2 (A to C). It confirms our prediction
that the average innovation rate is set by the complexity distribution of
the products.

Particular versus average innovation rates
To understand the relationship between a particular innovation
rate and the average innovation rate, let us look at component use-
fulness. The usefulness of a component is the number of products it
appears in. The usefulness of different components varies a lot within
a given domain. For instance, in the English language, e is used in
26,015 words, whereas j is only used in 540 words. In gastronomy,
egg is used in 20,951 recipes; angelica is only in 1. In technology,
Google Analytics is in 749 software products; GoDaddy is in 1. In
Fig. 3 (E to H), we show the rank-frequency distributions for all of
the components in each domain. Different domains have qualita-
tively different distributions.

The size of the product space for a particular basket of components
depends on the usefulness of acquired components: Adding egg to our
basket will boost the number of products we can make a lot more than
adding angelica. On the other hand, we know from Eq. 2 that the av-
erage size of the product space is independent of component useful-
ness. The result is that the distribution of component usefulness affects
the size of fluctuations around the average value—how jumpy the
curve is—but only the distribution of product complexity affects the
average innovation rate itself.
DISCUSSION
Nature versus nurture
In any given domain, the innovation rate depends partly on the com-
ponents we choose to acquire and partly on properties of the domain
itself. In other words, the innovation rate is partly influenceable and
partly predetermined. This is similar to how traits are partly set by
nurture and partly set by nature. For example, running fast depends
on both training and genetics. In previous work (22, 23), we studied
the “nurture” aspect of innovation: how we can influence the innova-
tion rate by strategically choosing the right components. Here, we
studied the “nature” aspect of innovation: how each domain is funda-
mentally predisposed toward its own intrinsic innovation rate. This
intrinsic rate—the average over all possible component orderings—
is set solely by the distribution of product complexity, and it can vary
markedly from domain to domain. The rates for specific component
orderings fluctuate around the intrinsic rate.
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Fig. 1. We studied products and the components used to make them from four domains. (A) In language, the products are 39,915 English words and the
components are the 26 letters. (B) In gastronomy, the products are 56,498 recipes and the components are 381 ingredients. (C) In mixed drinks, the products are
3053 cocktails and the components are 350 beverages. (D) In technology, the products are 1158 software products and the components are 993 development tools
used to make them. For each domain, we show the number of products we can make when we acquire components in alphabetical order (points) and the average
number of products we can make over all possible orders in which to acquire the components (lines).
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Complexity discount
When we can make some set of products p(n) at stage n, we might
think naively that these represent an unbiased draw across all pos-
sible products in the universal recipe book. In fact, the draw is not at
all unbiased, but is strongly weighted toward simpler products, as we
are much more likely to have hit upon the components in them. For
example, if a child knows only half the letters in the alphabet, then he
is a lot more likely to be capable of writing “banana,” ð nc Þ=ð n′c Þ ¼ð 133 Þ=ð 263 Þ ¼ 11%, than “orange,” ð 136 Þ=ð 266 Þ ¼ 0:7%: “Banana,”
made of three distinct components, is a simpler word than “orange,”
made of six. His vocabulary, far from falling uniformly over all words,
is strongly weighted toward simpler words. In other words, the chance
of drawing complex products is discounted, by the factor
ð nc Þ=ðn′c Þ≃ ðn=n′Þc, which grows exponentially with complexity c.

On forecasting
Conservation laws allow us to make predictions. The conservation
law that we derived governs the average size of the product space. How-
ever, we cannot measure the average size of the space, just the size of a
particular instance of the space. For the size of the product space to be
an unbiased estimate of its mean, the sequence of new components
at each stage must be independent and identically distributed. In prac-
tice, however, the distribution for new components can vary over time.
Fink and Reeves, Sci. Adv. 2019;5 : eaat6107 9 January 2019
When this happens, we can only make meaningful forecasts over
time scales that are short compared to this variation. This is anal-
ogous to how selection pressures in evolution are meaningful as
long as the environmental change is slow compared to the repro-
duction time scale.

The benefit of being front-loaded
Our conservation law for the average innovation rate provides a sur-
prising insight into how innovation occurs through time. Even when
the mean product complexity�c is the same across different domains, a
domain with a front-loaded distribution of complexity yields much
faster innovation. A front-loaded distribution, such as Poisson, has
many simple products, whereas a distribution that is not front-loaded,
such as constant complexity, has no simple products. A binomial dis-
tribution lies between these two. The more front-loaded the dis-
tribution, the faster the innovation rate tends to be.

A small difference in the fraction of simple products makes a big
difference to the innovation rate, for two reasons. First, simpler pro-
ducts are exponentially more likely to be makeable. Second, the product
space is exponentially smaller early on, so these simpler products make
up a large fraction of the space. In our Lego example, Dan’s castle set
is front-loaded, whereas Carol’s Star Wars set is not; it is this difference
that led to their contrasting performances.
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Fig. 2. We compared the innovation rates for different distributions of product complexity. (A to C) The same set of components can be used to make different
sets of products. We show toy examples of 10 components used to make 30 products with (A) constant complexity, (B) binomial complexity, and (C) Poisson
complexity. (D to I) To test our prediction that the average innovation rate depends only on the distribution of product complexity, we glued together all 56,498
gastronomy recipes end to end to form a giant strip of 464,405 components. We then cut these into pieces with different lengths to make new recipes. We chose the
lengths to be constant (D), binomially distributed (E), and Poisson-distributed (F), all with mean length �c ¼ 8. When we added components to our basket in a random
order and measured the size of the product space (points) (G to I), we found that it follows our prediction in Eq. 3 (lines).
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When to go lean
Lean methodology (26) accelerates the search for product-market fit
by quickly bringing a simple product to market. With early access to
user feedback, this minimum viable product can be rapidly adapted to
form the basis of a feasible business plan. Lean methodology has been
practiced by software start-ups, government agencies, and health care
corporations (36), but is a lean approach equally suited to all innova-
tion domains?

Our work suggests that the scope for applying lean methodology
depends on how front-loaded the distribution of product complexity
is. In domains that are not front-loaded, there will be a scarcity of
products that can be made at the start of the innovation process. Such
domains are best suited to firms with the resources to weather sus-
tained investment with little return early on. On the other hand, a
front-loaded distribution of products will enable the rapid expansion
of the product space straightaway. Resource-poor start-ups and devel-
oping communities are more likely to thrive in such domains. Many
organizations are confronted with a choice about which domain to
enter, and anticipating these differences ahead of time can help them
choose the right one.

Frugal innovation
Frugal (27, 37) and reverse innovation (38, 39) make a technology
more widely available by reducing the number of necessary compo-
nents. In doing so, the modified technology will only approximate the
original technology, but this is outweighed by the significant boost in
reach. Our model of innovation offers a quantitative explanation of
this phenomenon. Using Eq. 1, we see that the probability of being
able to make a given product with an arbitrary basket of components
decreases exponentially with the complexity of the product. A small
reduction in product complexity increases many times over the prob-
ability that it can be made. This increase is stronger for developing
communities with fewer resources (components n) than it is for ad-
Fink and Reeves, Sci. Adv. 2019;5 : eaat6107 9 January 2019
vanced communities with many resources. In this way, a greater frac-
tion of developing communities will gain access to the simplified
technology than advanced ones.

How to encourage tinkering
Tinkering is improving something in an experimental manner. It
tends to be process-driven rather than goal-driven; the journey is
the reward rather than the end result. Tinkering is important because
it can make innovation feel like play instead of work. Our model pro-
vides a basis for promoting tinkering in domains that can be reverse-
engineered to have different product complexity distributions.

Consider, for example, software. In drawing programs, spread-
sheets, and word processors, commands can be combined in different
ways to perform tasks. Think of the commands as the components in
our model, and the tasks as the products in our model. The user’s
innovation rate is the growth in size of his task space as he learns
new commands. Learning a new command requires effort, and the
user’s return on that effort is the number of new tasks he can perform.
A user remains motivated when his return exceeds his effort at each
stage of the learning process; otherwise, he is liable to give up. Software
and mobile app designers can reverse-engineer an optimal user
experience journey by building a Poisson distribution of task com-
plexity, so that the number of tasks that can be performed rises stead-
ily as new commands are learned.

A familiar example of tinkering is building with toy constructions
sets, such as Lego, Meccano, and Zometool. Just like the ability to per-
form more tasks compensates for having to learn a command, the
thrill of making new inventions motivates a tinkerer to select new
bricks and explore new combinations. To encourage tinkering, the
distribution of product complexity should be front-loaded so that
new products can be made throughout the innovation process, not
just at the end. This makes innovating feel more like play, as was
the case with Dan, and less like work, as was the case with Carol.
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Fig. 3. We computed the distribution of product complexity and the rank frequency of components for our four domains. (A to D) The distribution of product
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METHODS
Data
Our four datasets were obtained as follows. In language, our list of
common English words is from the built-in WordList library in
Mathematica 10.4. Of the 40,127 words in WordList, we only con-
sidered the 39,919 made from the 26 letters a to z, ignoring case:
We excluded words containing a hyphen, space, and so on. In
mixed drinks, the 3053 cocktails were curated by us from the web-
site www.thecocktaildb.com. In gastronomy, the 56,498 recipes can
be found in the supplementary materials in (34). In technology, the
1158 software products and the development tools used to make
them can be found at www.stackshare.io.

Proof or product invariant
A product of complexity c contains c distinct components. Let N be
the set of N possible components, n be our basket of n components
chosen from N, and c be some combination of c components
selected from our basket n. The number of products of complexity
c that we can make from our basket can be found by considering
all possible combinations and adding up the number that are
products

pðn; cÞ ¼ ∑
c⊆n

prodðcÞ;

where prod(c) takes the value 0 if the combination of components c
forms no product and 1 if it forms one product. [Occasionally, the
same combination of components c forms multiple products: for
example, beef, butter, and onion form two distinct recipes of
complexity 3. In such cases, prod(c) takes the value 2 if c forms two
products of complexity c, and so on.] The average number of products
we can make, �pðn; cÞ, is the average of p(n, c) over all subsets n ⊆ N;
there are ðNn Þ such subsets. Therefore

�pðn; cÞ ¼ 1=ð Nn Þ ∑n⊆N
pðn; cÞ

¼ 1=ð Nn Þ ∑n⊆N
∑
c⊆n

prodðcÞ:
ð4Þ

Consider some particular combination of components c′. The double
sum above will count c′ once if c = n but multiple times if c < n,
because c′ will belong to multiple sets n. How many? In any set n
that contains c′, there are n − c free elements to choose, from N − c
other components. Therefore, Eq. 4 will count every combination c a
total of ðN�c

n�c Þ times, and

�pðn; cÞ ¼ 1=ðNn ÞðN�c
n�c Þ ∑c⊆N

prodðcÞ

¼ ð nc Þ=ð Nc Þ�pðN ; cÞ:

The same must be true when we replace n by n′. Solving both equa-
tions for �pðN ; cÞ and equating them, we find

�pðn′; cÞ=ð n′c Þ ¼ �pðn; cÞ=ð nc Þ:
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Summing over c, we find

�pðn′Þ ¼ ∑
c
�pðn; cÞð n′c Þ=ð nc Þ:

When the number of components is big compared to the product size
(n, n′ ≫ c), using Stirling’s approximation, we can approximate ð nc Þ
and ð n′c Þ by nc and n′c, and thus

�pðn′; cÞ=n′c ≃ �pðn; cÞ=nc:

Again, summing over c, we find

�pðn′Þ≃∑
c
�pðn; cÞðn′=nÞc: ð5Þ

Since the size of the product space is an unbiased estimate of its mean,

pðn′Þ≃∑
c
pðn; cÞðn′=nÞc:

Specific complexity distributions
When we assume a specific distribution for the complexity of
products, we can explicitly write the relation between the future
average size of the product space and the current average size.
For a Poisson distribution of product complexity with mean �c,
the average number of products with complexity c is

�pðn; cÞ ¼ �pðnÞ�cce��c=c!:

Substituting this into Eq. 5, with x = n′/n, yields

�pðn′Þ≃ ∑
∞

c¼0
�pðnÞ�cce��c=c!ðn′=nÞc

¼ �pðnÞe��c∑
∞

c¼0
ð�cn′=nÞc=c!

¼ �pðnÞeðx�1Þ�c:

Similarly, for a binomial distributionof product complexitywith event
probability 1/2, the average number of products with complexity c is

�pðn; cÞ ¼ �pðnÞð 2�cc Þ 1
2

� �2�c
:

Substituting this into Eq. 5, with x = n′/n, yields

�pðn′Þ≃ ∑
2�c

c¼0
�pðnÞð 2�cc Þ 1

2

� �2�cðn′=nÞc

¼ �pðnÞ 1
2

� �2�c
∑
2�c

c¼0
ð 2�cc Þðn′=nÞc

¼ �pðnÞ 1þx

2

� �2�c
:

Glue and break
Our glue and break experiment in Fig. 2 (D to I) was done as follows.
First, we glued together all 56,498 of the gastronomy recipes back to
front to form one long strip of 464,405 components. Second, we
sampled 55,000 numbers from each of three different distributions
6 of 7
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to use as the new recipe lengths (that is, the number of ingredients in
each recipe). In distribution one, the complexity was fixed at 8 and the
numbers were 8, 8, 8, 8,…. In distribution two, the complexity was
binomially distributed with mean 8 and event probability 1/2 and
the numbers were 7, 8, 6, 6, 11,…. In distribution three, the com-
plexity was Poisson-distributed with mean 8 and the numbers were
5, 12, 20, 9, 5,…. Third, we broke up the giant strip of ingredients
three different times, according to the three sequences of integers. This
produced in each instance a new set of 55,000 recipes, all with a mean
complexity of 8. (For comparison, the mean complexity of the actual
recipes was 8.22.) We note that some of the new recipes might contain
the same ingredient twice, since we did not take measures to ensure
against this. Because we only count distinct components in a product,
the complexity of some recipes will be less than the total number of
ingredients in each. However, this effect is negligible and has virtually
no effect on the histograms in Fig. 2 (D to F).
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