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Abstract
The use of the vonNeumann entropy in formulating the laws of thermodynamics has recently been
challenged. It is associatedwith the average workwhereas thework guaranteed to be extracted in any
single run of an experiment is themore interesting quantity in general.We show that an expression
that quantifiesmajorization determines the optimal guaranteedwork.We argue it should therefore be
the central quantity of statisticalmechanics, rather than the vonNeumann entropy. In the limit of
many identical and independent subsystems (asymptotic i.i.d) the vonNeumann entropy expressions
are recovered but in the non-equilbrium regime the optimal guaranteedwork can be radically
different to the optimal average.Moreover ourmeasure ofmajorization governs which evolutions can
be realized via thermal interactions, whereas the non-decrease of the vonNeumann entropy is not
sufficiently restrictive. Our results are inspired by single-shot information theory.

Statisticalmechanics is a corner-stone ofmodern physics.Many of its basic paradigms andmathematical
methodswere set in an era where the experimental abilities weremuchmore limited andmodern information
theory not developed. Accordingly there is currently significantmomentum in investigating the theory’s
foundations in the quantumand nano regimes, see e.g. Jarzynski (1997), Lloyd (1997), Gemmer andMahler
(2004), Allahverdyan et al (2004), Linden et al (2010), Toyabe et al (2010), Brandão et al (2011), Jevtic et al
(2012) tomention but a few recent contributions.We here derive an alternative type of statisticalmechanics
from scratch. Our approach is inspired by recent results in information theory (Renner andWolf 2004,
Renner 2005) and builds on (Dahlsten et al 2011, Rio et al 2011, Aberg 2012,Horodecki andOppenheim 2013).
We argue this approach is both significantlymore general than the standard theory and addresses questions
more relevant tomodern experiments.

It ismore general in thatwewill not assume that the states of systems of interest are thermal, but rather just
that there is a heat bathwhichwhen interactingwith a system gradually takes that system towards a thermal state.
Thus the systemof interest is not necessarily in equilibrium. In fact wewill allow for any probability distribution
over energy levels.We do in particular not assume that the systemunder consideration is large or that internal
correlations are negligible. Thismakes the approach significantlymore relevant tomodern experiments where
small subsystems can be addressed individually and in time-scales faster than the thermalization time.

A key difference regarding which questions are addressed is that we focus not on averages of distributions as
in standard statisticalmechanics. Insteadwe ask, for any given single run of an experiment, which threshold
values are guaranteed to be exceeded, ormore generally guaranteed to be exceeded up to some probability ε, not
necessarily small. This is referred to as the single-shot paradigm, as opposed to the average paradigm. This
distinction is important when distributions of quantities have a significant spread around the average, as is often
the case for small systems.
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To seewhywe choose the single-shot paradigm, consider work extraction from a system.Work is a
particularly important quantity, appearing in thefirst and second laws of thermodynamics and of crucial
importance in the context of engines. As usually this is the case, let there bemore than oneway to extract work,
e.g. different ways of changing theHamiltonian of the system fromwhichwork is to be extracted. Say for
concreteness that there are two different strategies: strategy 1 (S1) and strategy 2 (S2). Let S1 (S2) be associated
with probability distributions over extractedworkw denoted by p W p W( )( ( ))1 2 . Suppose that the averages are
equal, i.e. W WS S1 2〈 〉 = 〈 〉 , but p W( )1 has no spread around the average, whereas p W( )2 has a significant
spread. Are these protocols now equally ‘good’, as onemight think by looking at the averages? This is certainly
not the case in general. Suppose that there is a threshold forW,W* that needs to be exceeded. Such thresholds
often exist as e.g. an activation energy for some process, or a band-gap to jump. Supposemoreover, tomake this

example interesting, that W W W *S S1 2〈 〉 = 〈 〉 > . Nowwith S1wewill indeed achieve the thresholdwith
probability 1, but with S2 the probability of exceeding the threshold can be arbitrarily small, as theremay be a
small probability of significantly exceeding the threshold but a large probability of just about failing to achieve it.

If we instead of the average considered thework guaranteed up to probability ε, writing this asWS
ε, where S is

the strategy, we see thatW W W * [0, 1]S S1 1 ε= 〈 〉 > ∀ ∈ε whereasW W *S2 <ε for all ε smaller thanwhatever
the probability of being below the threshold is. This example demonstrates that the single-shot quantityWS

ε

does, in contrast to the average W S〈 〉 , make it clear that the two protocols perform very differently.Wefind this
examplemost interesting if one considers different ε and not only 0ε = .

In this article we derive an expression concerning the optimal workWS
ε for various initial andfinal

conditions.More specifically we consider a systemwith an initial HamiltonianHi and densitymatrix ρ, and a
givenfinalHamiltonianHf and densitymatrix σ.We only consider states ρ and σ diagonal in the energy basis.
The experimentermay choose from a set of possible strategies S, which are arbitrary combinations of
infinitessimal changes in theHamiltonian, and interactions with a thermalizing heat bath associatedwith
temperatureT. Thework guaranteed to be exceededwith a failure probability up to ε is thenwritten as
W H H( , , )S i fρ σ→ε . As themain technical result of this paper we derive an expression for the optimal

guaranteedwork:W H H W H H( , , ) max ( , , )i f S S i fρ σ ρ σ→ = →ε ε .We show it is given—if we suppress
certain details to be specified later—by

( ) ( ( ) ( ))W H H kT, , ln , , ,i f M G H G Hi fρ σ ρ σ→ = ∥ε

where ( ( , ) ( , ))M G H G Hi fρ σ∥ is ameasure of howmuch ρmajorizes σ. Thismeasure ofmajorization emerges
fromour considerations. Away of calculating the deterministic work for the zero-risk case in terms of diagrams
has been given inHorodecki andOppenheim (2013). In this case the results coincide. In Aberg (2012)
deterministic work is defined aswork that will be extracted, nomore no less, with probability 1. ( , )ϵ δ
-deterministic workWmeans theworkwill be in the interval W W[ , ]δ δ− + up to an error probability of ϵ.
Here in contrast we have considered guaranteedwork. The difference between guaranteed and deterministic
work can bemost easily seen for ϵ and δ both being 0. Then having non-zero deterministic work necessitates no
spread in the distributionwhereas guaranteedworkmeans that the spread lies above thewanted threshold.One
can get an upper bound for the deterministic work by the guaranteedwork, but in general they are different
objects.

In standard thermodynamics it is the free energy difference F U TS( )vNΔ Δ= − which determines the
optimally extractable work, andmoreover gives a criterion forwhich state transformations are realizable by
interactionswith a heat bath, via F 0Δ ⩽ , as can be shown to be true formany reasonablemodels of
thermalization.We argue however that M should be the central quantity of statisticalmechanics, by virtue of: (i)
characterizing optimal guaranteedwork and (ii) providing a tight condition forwhich evolutions are consistent
with our thermalizationmodel, as opposed to F 0Δ ⩽ whichwe show is necessary but not sufficient. These
statements will bemade precise later in this Letter.We call M the relativemixedness. In certain limits M reduces to
differences in entropy of so-called single-shot entropies, which in turn in the asymptotic i.i.d. limit
( nρ⊗ , n → ∞) reduce to the vonNeumann entropy SvN. But in general the relativemixedness of two states can
be very different to the standard free energy difference FΔ .

We go on tomake use of the results relating to the relativemixedness to formulate the laws of
thermodynamics in the single-shot paradigm. Thefirst law ismodified to be about guaranteedwork rather than
averagework. Several versions of the second law are allmodified in important ways. Apart from the already
mentioned replacement of free energy decrease, the optimal extractable work turns out not to be a function of
state but a relative notion between two states. The relativemixedness acts as a unifying featurewhichmeans that
the new laws nevertheless have a simple structure.

As there are strong connections between the structure of entanglement theory and that of thermodynamics,
wemoreover consider the impact on entanglement theory, showing how to quantify entanglement as a relative
notion between two states using relativemixedness rather than as a state function given by the vonNeumann
entropy.
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Results

Existing results
Webeginwith briefly reviewing key results that we shall later recover as special cases of our expression. (This is
thus not an exhaustive list of all previous results). The results concern extractingwork in the presence of a heat
bath at temperatureT . The details of themodels of work extraction in the different papers are not a priori
identical, but we shall recover the same expressions within themodel here.

InDahlsten et al (2011) an n-cylinder Szilard enginewas considered and the following expression derived:

( )W n H kT ln 2. (1)max= −ε ε

HereW ε is thework that can be extracted in a process withmaximumprobability of failure ε. Hmax
ε is the

smoothmax entropy of the densitymatrix representing awork-extracting agent’s initial knowledge about the
state of theworkingmedium. This is defined as H ( ) log (rank ( ))max ρ ρ=ε ε , with rank ( )ρε the number of non-
zero eigenvaluesminimized over all states within ε trace distance of ρ. (Actually there is an alternative definition
aswell but they are both known to coincide up to an additive log 1

ε
term, so for simplicity we focus on one

definition here.)T is asmentioned above the temperature of the heat bath, and kBoltzmann’s constant.
H ( )max ρε reduces to the vonNeumann entropy in the in the i.i.d. limit, i.e., when nρ τ= ⊗ , n → ∞ and 0ε → .
Physically this corresponds to systems composed of very large numbers of identical and uncorrelated
subsystems.

A key result obtained independently in themore recent papers (Aberg 2012,Horodecki and
Oppenheim 2013) is that given an initial state ρ and a final thermal state Tρ over the same energy levels, thework
that can be extracted given access to a heat bath of temperatureT, andwith up to ε failure probability is:

( ) ( )W kT Dln 2 , (2)T0 ρ ρ= ∥ε ε

where D ( )T0 ρ ρ∥ε is the ε-smooth relative entropy of order 0 (seeDatta 2009). In Aberg (2012) ρ is taken to be
diagonal in the energy eigenbasis and in the a priori distinct set-up inHorodecki andOppenheim (2013) the
state if not already diagonal in the energy eigenbasismay be replaced by the corresponding diagonal (decohered)
state without changing the expression for the extractable work (inHorodecki andOppenheim 2013 also the
probabilistic work for the opposite process was given and the deterministic work for arbitrary (initially energy-
diagonal) state conversion). The RHS of equation (2) reduces toW kT Dln(2) ( )Tρ ρ= ∣∣ for the standard
relative entropy in the asymptotic i.i.d.(vonNeumann entropy) regime. That latter expression is well-
established, see e.g. Donald (1987). Equation (2) reduces to equation (1) in the case of degenerate energy levels,
as shown inAberg (2012). In this present article we impose no restrictions on the energy spectra or occupation
probabilities, theymay take arbitrary form independently of one another.

Themodel forwork extraction
Ourwork extractionmodel can be thought of as a gamewith simple butminimal rules. (It will nevertheless not
be trivial to analyse as there is amultitude of different strategies onemay choose for the task of work extraction
given the initial and final conditions.) Themodel is inspired byAlicki et al (2004) and very similar to that used in
Aberg (2012). There are three systems and an implicit work-extraction agent representing the external
experimenter who can control certain parameters. As depicted infigure 1(b) one system is theworkingmedium,
another is a heat bath of temperatureT, and the last is thework reservoir.

The initial and final energy spectra E{ } and F{ }of theworkingmedium are arbitrary. The initial and final
densitymatrices of theworkingmedium, ρ and σ, are not assumed to be thermal, they can take any form as long
as they are diagonal in the energy basis. This is because we assume, as is non-trivial but standard, that the
decoherence time ismuch faster than the thermalization time (Alicki et al 2004). These initial and final
conditions are depicted infigure 1(a).

One of the two elementary processes the agent can compose to build the full strategy is thermalization of the
workingmedium.With thermalizationwemean gradual thermalization, i.e. we do notmean that the state after
the thermalization process is thermal, butmerely that it is nearer to the thermal state than before the process.
This ismodelled by the probabilities of the energy-levels being transformed by amatrix from the set of stochastic
matrices which have the thermal state corresponding to temperatureT as thefixed state. This process does not
change theHamiltonian of theworkingmedium. There is by definition nowork gain or cost from this process.

The second elementary process is changing theHamiltonianof the system through shifting an energy level by
some chosen amount Eδ .Onemay for example think ofmoving amagnet or a charge closer to the systemas away
of shifting the levels. Thismay involve awork gain/cost, because if the systemoccupies theparticular energy
eigenstate(s) that gets shifted by Eδ this counts asworkdoneon the system. If the systemdoesnot occupy the
eigenstate that gets shifted there is nowork cost. Importantly, we enforce energy conservationby changing the
energy of thework reservoir by the same amount ( Eδ if the shifted level is occupied, 0 otherwise). As the system’s
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state is in general not fully known, eachHamiltonian-changing step induces a probability distributionover energy
transferred to thework reservoir. For example, if level ionly is raised by Eiδ and the others are stationary the
probability of thework reservoir losing Eiδ of energy is pi, the probability of occupationof level i, and theprobability
of thework reservoir not changing its energy is p1 i− . Finally, it is assumed that the experimenter implements
Hamiltonian changeswithout affectingwhich energy level is occupied. This is justifiedby the adiabatic theorem
which says that it is possible to avoidhoppingbetween levels by shifting themsufficiently slowly. In general thiswill
not be the case butweare interested in fundamental limits and allow the experimenter this level of control.

The agent’s choice of how to combine the elementary processes is called its strategy  . Any given strategy will
in general generate an associated probability distribution over work costs/gains, i.e. of total energy transfers
from/to thework reservoir.When strategy  is guaranteed to transfer a certain amount of energy up to
probability εwe call this the (ε-) guaranteed work and denote it byWε. In a given realization the strategy  may
then (with a probability bounded by ε) fail to achieveWε, otherwise we say thework extractionwas successful
(in achievingWε).

Relativemixedness gives the optimal guaranteedwork
In this sectionwe focus on deriving the optimal amount of work that can be guaranteed to be extracted (up to
failure probability ε), writing this asW W( ) max ( ) ρ σ ρ σ→ ≔ →ε ε . The boundwe get from these
considerations is one of themain results of this paper.

Wewill show that this is determined by ameasure of howmuchmoremixed one state ρ is than another, σ.
We call this the relativemixedness andwrite it as ( )M ρ σ∥ . Aswe consider states diagonal in the energy basis, the
only relevant information about a state will be its spectrum. For our purposes it will therefore be enough to
define the relativemixedness for probability distributions.

Figure 1. (a) Abstract depiction of the set of states, including the initial state ρ andfinal state σ . Each state is associatedwith a set of
energy levels and occupation probabilities.We derive an expression for howmuchwork one can optimally extract with amaximum
probability of failure of ε for any such ρ and σ . This quantity is called W H H( , )i fρ σ→ε . Only in certain limits does it reduce to the
standard free energy difference. (b) The generic setupwe are considering involves three systems: a heat bath at temperatureT, a
workingmedium system associatedwith some initial state ρ, and awork reservoir system.Onemay for instance couple the system to
the heat bath and thework reservoir alternately and thereby transfer energy from the heat bath to thework reservoir, at the cost of
randomizing theworkingmedium system.
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Definition 1.Consider two probability distributions x( )λ and x( )μ defined over x ( 0)∈ ⩾ . Let x( )λ ↓ and
x( )μ ↓denote these distributions after a (measure-preserving) rearrangement so that they are in descending

order. Let the cumulative distribution function associatedwith a function γ be denoted as

x x x( ) d ( ).
x

0
 ∫ γ≔ ′ ′γ

Then the relativemixedness of x( )λ and x( )μ is defined as

m
x

m
x x( ) max s.t. ( ) ( ) ,M  λ μ∥ ≔ ⩾ ∀λ μ↓ ↓

where m ∈ . Inwords: the relativemixedness of λ and μ is themaximal amount bywhich one can stretch λ↓
under the condition that its integral upper bounds the integral of μ↓ at all points.

By the definition ofmajorization, if and only if 1M ⩾ does (the spectrumof) ρmajorize σ, ρ σ≻ . The actual
number M can thus be viewed as putting a number to howmuch ρmajorizes σ.

We shallmake use of a powerful insight fromRuch (1975), Ruch andMead (1976),Mead (1977), whowere
—to our knowledge—thefirst to note that the decreasing of the vonNeumann entropymight not be a sufficient
criterion for characterizing thermodynamical processes and they proposed a criterion based onmajorization;
this insight is also used inHorodecki andOppenheim (2013) where they showed this criterion to be necessary
and sufficient for a class of quantumoperations introduced in Janzing et al (2000). A relation between
majorization and thermodynamics has also been noted in Janzing et al (2000),Horodecki et al (2003),
Allahverdyan et al (2004), Janzing (2006). The insight bridges a particular gap between information theory and
statisticalmechanics: the fact that the former does not care about energy. In information theory, the Shannon/
vonNeumann entropy of a state, log

i i i∑ λ λ− is independent of the energies of the states involved. As the

extractable work should depend on the energy levels involved it follows that it is not expected to be uniquely
determined by an entropy.

A keyway inwhich energy enters into statisticalmechanics is that in aGibbs state the probability of any given
energy eigenstate with energy E is given by p E Z( ) exp( )T

E

kT
= − , whereZ is the partition function. The insight

we adapt fromRuch (1975), Ruch andMead (1976),Mead (1977) is that we can take this bias into account by
what essentially amounts to rescaling the densitymatrix’s eigenvalue distribution by pT(E). After the rescaling
the occupation probabilities will turn out to uniquely determine our expression for the extractable work.More
specifically, we shall be employing an operationwe termGibbs-rescaling to the eigenvalue spectrum. Consider
states with discrete spectra { }iλ .Wefirstly transform the spectrum into the associated step-function. Thenwe

take each block, rescale its height as ( )expi i
E

kT
iλ λ↦ − , and its width ( )l 1 exp

E

kT
i= ↦ − such that the area of

the newblock is iλ as before.Wewrite this operation applied to a densitymatrix ρ as G ( )T ρ , or G ( )T H( , ) ρ to
make the dependence on theHamiltonianH explicit.

Away of understanding theGibbs-rescaling is to think of it as splitting events into finer events in such away
that a Gibbs state becomes a uniformdistribution, i.e. higher probability events get split intomore fine events
than thosewith lower probability. This fine-grainingmay even be thought of as physically associatedwith the
number of joint states on the system and the heat-bath, with high probability states associatedwithmore joint
states on the systemplus environment than low probability states.

Having defined the relativemixedness (. . )M ∥ andGibbs-rescaling G (.)T we can now give themain result.
This result states that given that the chosen strategymust take an initial state ρ to a final state σ and the initial
HamiltonianHi toHf, the optimal work that can be guaranteed up to probability ε to be extracted,
W H H( , , )i fρ σ→ε , is given by the relativemixedness of theGibbs-rescaled states.

Theorem1. In the work extraction game defined above, consider an initial densitymatrix e e
i i i i∑ρ λ= ∣ 〉〈 ∣and

final densitymatrix f f
j j j j∑σ ν= ∣ 〉〈 ∣with e{ }i∣ 〉 , f{ }j∣ 〉 the respective energy eigenstates ofHi andHf. Then for

any strategy  ,W H H W H H( , , ) ( , , )i f i f ρ σ ρ σ→ ⩽ →ε ε , where

( )
( ) ( )W H H kT

G
G, , ln

1
( ) .i f

T H

T H
( , )

,
i

f

⎛

⎝
⎜⎜

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎞

⎠
⎟⎟Mρ σ

ρ

ε
σ→ =

−
∥ε

Furthermore an explicit strategy we propose always saturates this bound, provided that the agent can access a single
extra two-level system (the catalyst system)which is fixed to be in one of its energy eigenstates with ξ ξ∣ 〉〈 ∣both initially
and finally, i.e. ...ρ ξ ξ= ⊗ ∣ 〉〈 ∣and ...σ ξ ξ= ⊗ ∣ 〉〈 ∣with the same initial and finalHamiltonian on the catalyst.

Herewe give themain arguments for the theorem, a full proof is given in the appendix.
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Thefirst claim concerning the relativemixedness expression on the RHS being an upper bound is arrived at
from the following line of reasoning. There are two elementary processes and each have the effect ofmaking the
statemore (or at least not less)mixed according to the relativemixednessmeasure.Work extraction, by
definition, only occurs during a change of theHamiltonian. In this case the optimal is to onlymove occupied

levels, for which the energy gain is given precisely by ( )( )kT G Gln ( ) ( )T H T H( , ) ( , )i fM ρ σ∥ (see the appendix).

The second claim concerns a universal strategy that we formulate. To illustrate it we nowdescribe a very
simple instance: the case of Landauer’s bit reset with certainty ( 0ε = ). Here there is a qubit associatedwith two
energy levels E1 andE2 with H E E1 1 2 21 2= ∣ 〉〈 ∣ + ∣ 〉〈 ∣.We demand E E 01 2= = at the beginning and at the
end, 1 2 1 1 1 2 2 2iρ = ∣ 〉〈 ∣ + ∣ 〉〈 ∣, 1 1fρ = ∣ 〉〈 ∣. The change in the state is why this is called ‘bit reset’ (it is often
called, ambiguously, bit erasure). Our universal strategy reduces in this simple case to the following: (i) lift both
energy levels up by E kT ln 2Δ = . This costs kT ln 2 ofworkwith probability 1, (ii) split the levels
quasistatically and isothermally such that E 01 → and E2 → ∞. In this step theGibbs rescaled distributions are
not changed, they are all ‘Gibbs-equivalent’. This level splitting actually costs 0workwith probability 1. This can
be seen bymaking use of the powerfulMcDiarmid’s inequality (McDiarmid 1989). The key step is to argue that
lifting an individual level quasistatically and isothermally gives a probability distribution over work that has
arbitrarily small spread around the average. This can be shownby considering a series of discrete lifts of the same
size EΔ with thework cost a randomvariable for each one. Thework cost of one step is independent of that of
any other step, because the state is by assumption thermal before each lift (as follows from the process being
isothermal and quasistatic).McDiarmid’s inequality states: Let X1,X2...Xn be independent random variables all
taking values in the same set. Call the realized value of Xi xi. Further, let f x x( , ...)1 2 be a real-valued functionwith
the property that changing one of the xi only can atmost change f by ci. Then for all 0ϵ > ,

Pr f f( ( ) ) exp .
c

2

i

n
i

2

1
2

⎛
⎝⎜

⎞
⎠⎟ϵ∣ − ∣ ⩾ ⩽

∑
ϵ−

=



Letting the randomvariables be the energy transferred to thework reservoir in each step, and f be the total
energy transferred, one canwith a little effort show that there is indeed no deviation from themean.Wenote that
Aberg (2012) contains alternative techniques for showing concentration around themean and that,moreover,
in the a priori different setting used inHorodecki andOppenheim (2013)what amounts toGibbs-equivalent
transforms at zerowork cost are also possible. (iii) Finally the system is decoupled from the heat bath and the
empty level 2 ismoved down to E 02 = (without anywork cost/gain), completing the process.

It is an interesting question howone could generalize our theorem. In themore general case of off-diagonal
terms in the energy eigenbasis, one expects entanglement to arise between thework reservoir and theworking
medium systemduring thework extraction steps and it is subtle how to definework as the energy of thework-
reservoir is not well-defined.One analytically clean approach is to allow decoherence in the systems energy basis
a free operation for the experimenter, as inHorodecki andOppenheim (2013). Then the corresponding
decohered state can be inserted into the above expression, implying that the relativemixedness of the decohered
state relative to thefinal state gives a lower bound on the extractable work in the case of off-diagonal terms.

Several existing results are recovered as special cases of theorem1. Equation (2) above (fromAberg 2012,
Horodecki andOppenheim 2013) and accordingly equation (1) (fromDahlsten et al 2011) are special cases of
ourmain result—see the supplementary information (we reiterate thatHorodecki andOppenheim 2013 uses an
a priori distinct set-up and note that thework referred to there is ‘deterministic’work associatedwith
deterministic energy transfers to a constantly pure work reservoir and is a priori distinct from the ‘guaranteed’
work considered here). Equation (2) corresponds to the case where the final state Tρ is demanded to have the
same eigenspectrum and be aGibbs state ( p E e e( ) )T T i i iρ = ∑ ∣ 〉〈 ∣ ). If the initial and final states are both thermal

with associated partition functionsZi andZf the expression reduces to kT ln
Z

Z

f

i
(as is consistent with

Aberg 2012,Horodecki andOppenheim 2013). To our knowledge our paper is the first to give an expression for
the optimal work (guaranteed) to be extractable from a general energy-diagonal state to another, with changing
Hamiltonians and possibly non-zero risk. InHorodecki andOppenheim (2013) they also consider howone can
calculate thework that can be extractedwith arbitrary initial and finalHamiltonian, with either the initial or the
final state being thermal and showing how the thermo-majorization condition describes the zero-risk,
deterministic work for arbitrary energy-diagonal initial andfinal states.

Generalized laws of thermodynamics in terms of relativemixedness
As the laws of thermodynamics are centered around the notions of energy, work and entropy, these laws should
according to our argument also be formulated in terms of relativemixedness for them to bemore suitable
beyond the asymptotic i.i.d.regime.

th0 law: the th0 law can be stated as: there exists for every thermodynamic system in equilibrium a property
called temperature. Equality of temperature is a necessary and sufficient condition for thermal equilibrium.This also
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holds after our generalization. In particular we are still assuming heat baths that take theworkingmedium closer
to aGibbs thermal state upon interaction.

First law: thefirst law can be viewed as both asserting the conservation of energy aswell as stating that it can
be divided into two parts, work and heat, which are normally defined in the description accompanying thefirst
law equation: U Q Wd d d= − .U Htr( )ρ= is the expected internal energy of theworkingmediumwith
HamiltonianH,Q is ‘heat’ andW ‘work’. The associated physical setting is that there is aworkingmedium
systemwhich can either exchange energywith another system in a thermal state dubbed a heat bath, or with a
work reservoir systemnormally implicitly assumed to be in some energy eigenstate of its ownHamiltonian.
Exchanges of energy with the heat bath are dubbed heat and thosewith thework reservoir work. This essentially
carries over into our approach butwith some important subtleties.We assume energy conservation (in every
single extraction), as well as allowing for interactions with a heat bath and awork reservoir. Thus the following is
respectedwhen the actual energy of the system Esys changes: E E Ed d dsys bath reservoir= − − .We,more subtly,

break Ed reservoir into two parts: E W Ed d dreservoir extra= +ε . There is the energy transfer which is predictable (up
to ε probability of failure) in that it corresponds to Wd ( ) ρ σ→ε for the infinitessimal state change ρ σ→ using
strategy  .We view anything beyond that, given by Ed extra, as heat (even though this energy flows into thework
reservoir atfirst). The idea behind this is that only predicted energy transfer should count as work.Onemay for
example imagine buckets liftingwater out of amine up to a certain height (or as a quantum example an electron
excited into the conduction band). The height at which the buckets are tipped into a reservoir is specified in
advance. If they go higher than this, the extra potential energy will be transferred to other degrees of freedom
associatedwith the reservoir system, e.g.intomovement of thewater (or heating of the semi-conductor).We
may express the followingfirst law for this approach:

In any given extraction, with probability p 1 ε⩾ −

E E W E Q Wd d d d d d . (3)sys bath extra = − − − ≡ −ε ε

Second law: consider next the so-calledKelvin statement of the second law: no process is possible inwhich the
sole result is the absorption of heat from a reservoir and its complete conversion into work.This does not say anything
about processes with a non-zero probability of failure.We show in the appendix that for given states of the
workingmediumA andB respectively, W A B W B A W A A( ) ( ) ( ).2→ + → ⩽ →ε ε ε Wecall this the triangle
inequality. It implies togetherwith themain theorem that all strategies in our game respect the following
generalization of Kelvin’s second law:

( )W A A W A A A A( ) if , (4)
i

m

i i
m

m

0

1

1 1i∑ → ⩽ → =ε ε

=

−

+

where i is the choice of strategy in theith step of the cycle. Note thatW A A( ) 00 → = (seemain theorem),
implying that deterministically nowork can be extracted in such a cycle. Onemay still gainwork in a single cycle
at the cost of having 0ε > for one ormore of the steps.

The second law is also closely related to entropy increasingwith time and onemaywonder what the
corresponding generalization of the statement is. A particular standard expression is that

S E( ) 0, (5)Δ β− ⩾

where S and E〈 〉 are the vonNeumann entropy and expected energy of a system interacting with a heat-bathwith
inverse temperature β. (Δ indicates the change in these values during the interaction.) This actually still holds in
ourmore generalmodel; we show this in the supplementary information.However, crucially, equation (5) is not
sufficient to guarantee that an evolution ρ ρ→ ′ is realizable through an interactionwith a heat bath. Instead it
should be replaced by the statement that a state change ρ ρ→ ′due to a thermalizationwith a heat-bath at
temperatureT is possible if and only if

W H H( , , ) 0. (6)0 ρ ρ→ ′ ⩾

This is significant as there are processes that respect equation (5) but violate equation (6). A simple example is to
consider degenerate energy levels, so that E 0Δ〈 〉 = , and three levels with probabilities
(1 2 1 2 0) (2 3 1 6 1 6)T T→ . Then S 0.25Δ ≈ butW0 is negative. Strikingly, such evolutions enable the
deterministic violation of Kelvin’s second law (if the evolution is stochastic—see supplementary information).

The inequivalence of entropy andmajorization has been noted previously in the context of the second law
(Ruch 1975, Ruch andMead 1976). Presumably this has not receivedmore attention to date because in the von
Neumann regime this inequivalence disappears.More precisely, if we consider a tensor product of n identical
states eachwith vonNeumann entropy S and let n → ∞, thenwith asymptotically small errorwemay
approximate the spectrum as a uniformprobability distribution on the set [0,2 nS− ]. For such distributions the
partial orders induced by S andmajorization respectively coincide.
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Wefinallymake a remark on themathematical structure that emerges here.We note that the extractable
work is no longer a function of state, whereas in standard statisticalmechanics the optimal extractable work
between two states is given by F F F12 2 1δ = − with F U TS= − . Here onemust consider the extractable work
between two states, assigning a free energy as a state function is not possible. It is not even optimal to go via
thermal states in general, i.e., there exist cases whereW W W( ) ( ) ( )T Tρ σ σ σ ρ σ→ + → < →ε ε ε .

Very recently it has been argued that our generalized formulation of the second law should be replacedwith a
slightly weaker condition (Brando et al 2015). As this appeared after our paper on the arXivwe defer discussion
of the relation between these papers to later work. In between this paper appearing on the arXiv and being
published several other related, interesting and relevant contributions have appeared, including Faist et al
(2012), Gour et al (2015), Lostaglio et al (2015).

Relativemixedness as entanglementmeasure
The structures of entanglement theory and thermodynamics are closely linked and often considered in
connectionwith one another, see e.g. Plenio andVedral (1998).We now consider the implications of our results
for entanglement theory. This section demonstrates that relativemixedness is natural to use in quantum
information theory also outside of thermodynamical contexts. It is customary to quantify entanglement via
entropy, in particular the standardmeasure of entanglement of a bipartite pure state ABρ is the vonNeumann
entropy of the reduced state, S S( ) ( )A Bρ ρ= . This is called the entanglement entropy. However there is good
reason to think that, as we have argued in the case of statisticalmechanics, entropy should be replacedwith
relativemixedness also in the context of entanglement theory.We propose a notion of relative entanglement
between two states ABρ and ABσ which is quantified as the (logarithmic) relativemixedness of the reduced states:
log ( )A A2 M σ ρ∥ .

This has the following appealing operationalmeaning. Consider the Bell state
( 0 0 1 1 )AB A B A B

1

2
ϕ∣ 〉 ≔ ∣ 〉 ∣ 〉 + ∣ 〉 ∣ 〉+ . Consider two arbitrary finite-dimensional bipartite pure states ABρ and

ABσ . Howmany such Bell pairs are needed to transform ABρ to ABσ ?More specifically, for what condition on ni
and nf is the LOCC (local operations and classical communication) conversion

( ) ( )AB AB
n

AB AB
ni fρ ϕ ϕ σ ϕ ϕ⊗ ∣ 〉〈 ∣ → ⊗ ∣ 〉〈 ∣+ + ⊗ + + ⊗ possible? The answer is that this is possible if

( )n n log .f i 2 M A Aσ ρ− ⩽ ∥

(We prove this in the appendix,making heavy use of the results ofNielsen 1999 and the setting of Buscemi and
Datta 2011).

As a very simple example, for 00 11ψ α β∣ 〉 = ∣ 〉 + ∣ 〉 (and α β⩾ ) and ABϕ ϕ∣ 〉 = ∣ 〉+ onefinds

( )Tr Trlog ( ) log 2B B2 2
2M ψ ψ ϕ ϕ α∣ 〉〈 ∣∣∣ ∣ 〉〈 ∣ = ∥ ∥ . This takes values between 1 ( 1α = ) and 0 ( 1

2
α = ).
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Appendix

The appendix is structured in the followingmanner. A: thework extraction game, B: upper bounding the
extractable work, C: the universal strategy that achieves the bound,D: implications for the second law, and E–G:
properties of the relativemixedness.

AppendixA. Thework extraction game

In this sectionwe define the settingmore carefully, and derive certain lemmaswhich shall be needed for the later
sections.
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A.1. Combining energy and occupation probabilities into one distribution: Gibbs rescaling
There are two central pieces of information about the system, the energy eigenvalues, and their occupation
probabilities.We shallfind it very powerful to followRuch (1975), Ruch andMead (1976),Mead (1977) and
combine them into one object, theGibbs-rescaled distribution.

Consider states with discrete spectra { }iλ .Wefirstly transform the spectrum into the associated step-

function. Thenwe take each block, rescale its height as ( )expi i
E

kT
iλ λ↦ − , and its width ( )l 1 exp

E

kT
i= ↦ −

such that the area of the newblock is iλ as before.Wewrite this operation applied to a densitymatrix ρ as G ( )T ρ .
It is depicted infigure A1 .Gibbs rescaling can, as will prove useful in later proofs, bewritten out in the language
of continuous functions in the followingmanner:

Definition 2 (Gibbs rescaling). Consider a densitymatrix e e
i

n
i i i1

∑ρ λ= ∣ 〉〈 ∣
=

with eigenvalues { }i i
n

1λ = and take

the energy eigenstates of the system to be e{ }i i
n

1∣ 〉 = with energies E{ }i i
n

1= respectively. There is an associated step
function for the spectrum, xn( ) xnλ λ= ⌈ ⌉where x (0, 1]∈ . Similarly there is an energy step function
E xn E( ) xn= ⌈ ⌉where x (0, 1]∈ . TheGibbs rescaling associatedwith temperatureT combines xn( )λ and E xn( )

to a new function G y( )T implicitly defined by

G ze d

e

.T
x E

kT
xn

E

kT
0

zn

xn

⎛
⎝⎜

⎞
⎠⎟∫ λ
=− ⌈ ⌉

−

⌈ ⌉

⌈ ⌉

It follows that G y( )T is defined on Z(0, ], with Z
E

kT
exp

j

n j

1

⎛
⎝⎜

⎞
⎠⎟∑= −

=
the partition function.Moreover G y( )T is

a probability distribution satisfying G y y( )d 1
Z

T

0
∫ = .

Figure A1.Gibbs rescaling: thewidth of each block k corresponding to the level k after rescaling is given by A k E k kT( ) exp( ( ) )= − ,
while its height is k A k( ) ( )λ so that its area is k( )λ , where k( )λ is the occupation probability of the level and E k( ) its energy
eigenvalue.
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A.2. Thermalizations
Wenow turn to how interactionswith the heat bath, thermalizations, act on the state of the system. Roughly
speaking these take the densitymatrix closer to the associatedGibbs state, similar statements can be found in
Ruch (1975), Ruch andMead (1976),Mead (1977) (especially see section 4 of Ruch andMead 1976, where also a
different argument is given for the result below concerning thermalizations). As alreadymentioned the
thermalization is taken to only change occupation probabilities and not energy eigenvalues.We take the
thermalization to act as a stochastic process on the energy eigenstates, in that the probability of occupying a given
energy state, P i( ), becomes P i P j i P j( ) ( ) ( )

j
∑′ = → where the summation is over all eigenstates, P j i( )→ is

a transition probability, and P j( ) an occupation probability (before the interactionwith the heat bath). This can
equivalently bewritten as P BP′⃗ = ⃗whereB is a stochasticmatrix (entries are probabilities and columns sum
to 1).

Not every stochasticmatrixB is allowed however. TheGibbs state (associatedwith temperatureT) is taken to
be invariant under a thermalization. Consider the implications firstly for the fully degenerate case of all energies
being the same. In this case theGibbs state is the uniformdistribution. The only stochasticmatrices that leave the
uniformdistribution invariant are bistochastic ones (rows also sum to 1). Thus in the fully degenerate caseB
must be bistochastic.We see no reason to impose further restrictions, so any suchB is allowed.

Consider secondly the non-degenerate case. Here it is again convenient to use theGibbs rescaled
distribution.Note that theGibbs state becomes uniform after theGibbs rescaling. Thus onemay hope that a
thermalization, i.e.a Gibbs state preserving stochasticmatrix on the occupation probabilities, acts as a bi-
stochasticmatrix on theGibbs-rescaled distribution, andwe now show that is indeed the case.

Before considering the general case, we look at a simple example of a two-level system.
Let B be the stochasticmatrix6 defined by the transition-probabilities, i.e:

P

P

P

P

p p

p p

P

P B
P

P

(1)

(2)

(1)

(2)

(1)

(2)
(1)

(2)
.

(1 1) (2 1)

(1 2) (2 2)

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟→

′
′

= =
→ →

→ →

The stochasticmatrix should leave the thermal state invariant:

e Z

e Z

e Z

e Z
B

e Z

e Z

e Z

e Z

(1)

(2)

(1)

(2)

(1)

(2)

(1)

(2)
,

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟→

′
′

= =

where e i Z E i kT Z( ) exp( ( ) ( ))( ) ( )= −′ ′ is theGibbs state (which should be invariant as the energy does not
change) and Z e e(1) (2)= + .

Look at what happenswith e (1) 2= and e (2) 1= . For theGibbs rescaling thismeans that P P(1) (1) 2→
on the length 2 and P P(2) (2)→ on the length 1.We can split the first level into two parts (in ourmind) and
consider new levels P P P P P P( (1 ), (1 ), (2 )) (1) 2, (1) 2, (2) 1)1 2 1 = all having the same length afterGibbs
rescaling. For the thermal state thismeans:

2 3
1 3

1 3
1 3
1 3

.
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟→

The transitionmatrix becomes:

p p

p p

p p p

p p p

p p p

2 2 2

2 2 2
(1 1) (2 1)

(1 2) (2 2)

(1 1) (1 1) (2 1)

(1 1) (1 1) (2 1)

(1 2) (1 2) (2 2)

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
→

→ →

→ →

→ → →

→ → →

→ → →

which is still stochastic, because the initialmatrix was. Since the thermal state has to be invariant under the
action of thismatrix and the thermal state in this case is proportional to the identity, it is straightforward to check
that thematrix has to be bistochastic (rows and columns sum to 1).

For the general case consider dividing theGibbs-rescaled distribution into fine blocks such that allfine
blocks have the samewidthw. LetN be the number offine blocks. (As themaximum support is given by the
partition functionZwehave w Z N= ). LetNk be the number offine grained blocks associatedwith level k,

such that N N
k

n
k1

∑ =
=

. Each energy level is associatedwith one block only labelled by k. Each lthfine block is

associatedwith a level kl.
Fine blocks associatedwith the same energy level kmust all have the same height, given by P k e k( ) ( )l l

(where e k E k kT wN ZN N( ) exp( ( ) )l l k kl l
= − = = is the total width of the level kl afterGibbs rescaling. See

the comment after the definition ofGibbs rescaling 2). Let f ⃗ contain theN heights of the fine blocks, with
/ /P k e k P k N ZN( ) ( ) ( ) ( )l l l kl

= as its lth entry. Nowwhen the occupation probabilities transformunderB, f ⃗

6
Stochasticmatrices have entries in [0, 1]with columns summing to 1, therefore theymap probability vectors to probability vectors.
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undergoes an associated transform.Wewill argue it is given by amatrix Fwhose entry in the l-th row andm-th
column is given by

F
B

N
. (A.1)lm

k k

k

l m

l

≔

To see this notefirstly that P B P B Pi j ij j j

N

N ij j
j

j
∑ ∑′ = = , and recall that f P N ZN( )l k kl l

′ = ′ . Thus

f
N

N
B P

N

ZN
(A.2)l

j

n
j

j
k j j

k1

l

l

∑′ =
=

N B

N

P N

ZN
(A.3)

j

n
j k j

k

j

j1

l

l

∑=
=

B

N
f (A.4)

j

n

m k j

k j

k
m

1 m

l

l

∑ ∑=
= =

B

N
f . (A.5)

m

N
k k

k
m

1

l m

l

∑=
=

AsBij andN are non-negative real numbers Fhas non-negative real entries only. To see that the columns sum to
1 so that F is a stochasticmatrix, note that the column sums are the same as forBwhich is stochastic.Moreover as
Bmust leave theGibbs state invariant, and this is a uniformdistribution after theGibbs rescaling, Fmust leave
the uniformdistribution (or anything proportional to it) invariant. Then for any row i: F N N(1 ) 1

j ij∑ = so

each rowof Fmust sum to 1. Therefore F is a bistochasticmatrix. Note that F is additionally restricted, through
being defined viaB, to keep the heights offine blocks the samewhenever these are associatedwith the same level.

Accordingly we define interactions with the heat-baths, thermalizations, to act in the followingway on the
system.

Definition 3 (Thermalization). A thermalization leaves the energy eigenvalues invariant. It acts on the
occupation probabilities, i.e. the eigenvalues of the densitymatrix, as a stochasticmatrix. This stochasticmatrix
leaves theGibbs state H Zexp( )β invariant. It follows from this definition and the definition of theGibbs-
rescaled distribution that a thermalization acts on theGibbs-rescaled distribution as a bistochasticmatrix.

A.3.Work extractions
The second elementary process is changing theHamiltonian of the system through shifting a set of energy levels
by some predetermined amount E j( )Δ , where j labels the jthwork extraction. Thismay involve a work gain/
cost, because if the systemoccupies one of the energy eigenstates that get shifted by E j( )Δ this counts aswork
done on the system andwewriteW E j( )j Δ= . It is assumed that this entails an energy transfer of E j( )Δ to the
work reservoir system, so that energy is conserved. If the systemdoes not occupy the eigenstate that gets shifted
there is nowork cost,W 0j = . To reduce the notation later onwewill alsofind it convenient to define the
‘logarithmic’workwj s.t.W kT wlnj

j≔ (or equivalently w W kTexp ( )j
j≔ ).

There is thus for each elementarywork extraction a probability distribution over work transfer, with two
elements, [ p W( 0)j = , p W E j( ( ))j Δ= ]. A sequence of work extractions generates a randomly picked sequence
of energy transfers to thework reservoir by, e.g. E E{0, 0, (3), 0, (5)...}Δ Δ . There is an associated vector of 0ʼs
and 1ʼs where a 1 as the j-th entry indicates that therewas indeed awork transfer of E j( )Δ in the j-th step.We call
this latter vector s ⃗, and the jth entry thereof sj. s 0j = means that the levels shifted inwork extraction step jwere
not occupied, and s 1j = means that theywere.

From the perspective of someonewho learns sj, the occupation probabilities { }iλ change. If s 1j = one
projects the state ρwith projector shiftedΠ onto the set of levels shifted so that the new state is

i i

tr( )
.i ishifted shifted

shifted

∑Π λ Π

ρΠ

If instead s 0j = one replaces the projector with one onto the levels that were not shifted.
We accordingly represent awork extraction in the followingmanner:

Definition 4 (Work extraction). We define awork extraction on the first l levels, which are all to get shifted in
energy by ( )E j kT w( ) ln

s s
j

1j
Δ = −

⃗ =
, while the remaining levels are untouched as follows. Letting y( )UΘ denote

the function that is 1 if y U∈ and else 0, the new occupation probabilities and energies are given by:
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• In the case when s 1j = (state of the system is found to be in the levels l(1, , )… ):

k k
k

( ) ( )
( )

,
s s
j

l
s
j

s s
j1 {1, , }

1

1
j

j

λ Θ
λ
η

=⃗ = …
⃗
−

⃗ =

where i( )
s s
j

i

l

s
j

1 1

1

j
∑η λ=

⃗ = = ⃗
− . In this case there is an energy transfer to the reservoir given, in terms of the

logarithmic work, by w E j kTexp( ( ) )
s s
j

1j
Δ=

⃗ =
.

• In the case when s 0j = (state of the system is not found to be in the levels l(1, , )… ):

k k
k

( ) ( )
( )

,
s s
j

l n
s
j

s s
j0 { 1, , }

1

0
j

j

λ Θ
λ
η

=⃗ = + …
⃗
−

⃗ =

where i( )
s s
j

i l

n

s
j

0 1

1

j
∑η λ=

⃗ = = + ⃗
− . In this case there is no energy transfer to thework reservoir, i.e. w 1

s s
j

0j
=

⃗ =
.

This next lemma considers how thework extraction in the preceding definition acts on theGibbs rescaled
distribution. This is also depicted infigure A2.

Lemma2. Let the levels l{1, , }… be used for work extraction as in the above definition. Let a ∈  be the combined

width of the blocks of theGibbs-rescaled distribution corresponding to the levels l{1, , }… , i.e. a e
i

l E

kT
1

i
j 1

∑= =

− −

. Let
x Z(0, ]j∈ (withZj the partition function after step j).

Then following awork extraction in step j, the resultingGibbs rescaled probability distribution, conditioned on the
previous steps on path s ⃗, is given by the following. In the case where s 1j = :

Figure A2.Work extraction: the action of thework extraction on theGibbs rescaled probability distribution can be seen as a stretching
byw of the part fromwhich one tries to extract thework kT wln( ), followed by a projection onto either the levels fromwhich one tried
to extract work (case s 1j = ) or the rest (case s 0j = ) followed by a renormalization.
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(p x x

p
x

w

w
( ) ( ) .

s s
j

aw

s
j

s s
j

s s
j

s s
j1 0,

1

1

1 1
j s s j

j

j

j j

1

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎤⎦Θ
η

=⃗ =

⃗
−

⃗ =

⃗ = ⃗ =
⃗ =

In the case where s 0j = :

(p x x

p x aw a

( ) ( ) .
s s
j

aw Z

s
j

s s
j

s s
j0 ,

1
1

0
j s s j

j
j

j

j

1

⎜ ⎟⎛
⎝

⎞
⎠⎤⎦Θ

η
=

− +

⃗ =

⃗
−

⃗ =

⃗ =
⃗ =

Proof.Case s 1j = :

Let the logarithmical work in step j be denoted by w ws
j= ⃗ ,

let theGibbs rescaled probability distribution after step j be p pj
s
j= ⃗ and the one before the step j:

p pj
s
j1 1=−
⃗
− ,

let the occupation probabilities be j
s
jλ λ= ⃗ and the sumof the relevant occupation probabilities (as in

definition 4): j
s
jη η= ⃗

Let x aw Z(0, ] (0, ]j∈ ⋂ and b (0, )∈ ∞ such that

E

kT
y xexp d

b
yn
w

j

0

1⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎡⎢ ⎤⎥∫ − =

−

.

p x p

E
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p
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E
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p

E

kT
z
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p

E
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y
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p

x

w

( ) exp d
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1

d

exp
ln( )

d
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ln( )
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1
exp d

1
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d
1

,

j j
b
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w

j

j
b
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w

j

j
b w zn

j

E kT
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w

j
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w

j
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w

j
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w

j

j

j
j
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j

j
j

b
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w

j

j
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1

0

1
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1

1

1

1

0

1

1

0

1

1
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⎜⎜⎜⎜

⎛

⎝
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⎞
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⎞
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⎜⎜⎜⎜
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⎜⎜⎜

⎞

⎠

⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟
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⎜⎜⎜⎜⎜
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⎞
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⎞
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⎞

⎠
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⎛

⎝

⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟
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⎝
⎜⎜

⎛

⎝
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⎜⎜

⎞
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⎞
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⎛
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⎛
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⎞

⎠

⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟

⎞
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⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎛
⎝

⎞
⎠

⎡
⎢⎢

⎤
⎥⎥

⎡
⎢⎢

⎤
⎥⎥

⎡
⎢⎢

⎤
⎥⎥

⎡
⎢⎢

⎤
⎥⎥

⎡
⎢⎢

⎤
⎥⎥
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⎢⎢

⎤
⎥⎥

⎡
⎢⎢

⎤
⎥⎥

  

∫

∫

∫

∫

∫

λ λ

η

η

η η

= −

= −
−

= −
−

=

−
−

=

−

= −

=

−

=

−

−

⌈ ⌉
−

=

−

−

−

− ⌈ ⌉
−

−

−

−

⌈ ⌉

where the equation (*) follows by definition 4 and the equation (**) follows by definition 2.
One easily sees that p x( ) 0j = for x aw⩾ , since then x( ) 0l{0, , }Θ =… in definition 4.
The proof for the case s 0j = is analogous. □
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This next lemma shows how the partition function changes during awork extraction, as a function of how
much the chosen levels are stretched (encoded inw) and howmany levels are shifted (encoded in a as described
above).

Lemma3.The partition functionZj immediately after step j is given by:

( )Z Z a w 1 ,j j 1 1= + −−

where a(0, ] is the interval onwhich theGibbs-rescaled distribution is associatedwith the stretched levels, andw1 is
the logarithmic work extracted if the extraction is successful.

Proof. Let the a(0, ] interval be associatedwith blocks corresponding to the levels l{1, , }… and split the interval
a Z( , ]j into n l− blocks for some n.

( )

Z

w

w a a Z aw a

e e e

e e e e

e e

j

k

E

kT

k

l E

kT

k l

n E

kT

k

l E kT w

kT

k l

n E

kT

k

l E

kT

a

k l

n E

kT

k

l E

kT

k l

n E

kT j

1 1

1

ln ( )

1

1

1 1

1

1 1

1 1

k
j

k
j

k
j

k
j

k
j

k
j

k
j

k
j

k
j

1
1 1 1

1 1

 

∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑

= = +

= + = +

= − + + = + −

−

=

−

= +

−

=

− −

= +

−

=

−

= +

−

=

−

= +

−
−

− − −

− −

out of which the lemma follows. □

A.4. Thework extraction game
Weconsider scenarios where there is an external agent whowants to use thermalizations andwork extractions to
transform a systemwith an initial HamiltonianHi and densitymatrix ρ, to a givenfinalHamiltonianHf and
densitymatrix σ. In the process the agentwill want to keep the energy of thework reservoir as high as possible, in
away that will bemademore precise below.

Definition 5 (Thework extraction game). There are three systems and awork-extraction agent. One system is
theworkingmedium, another is a heat bath of temperature T, and the last is thework reservoir.

The initial energy spectrum E{ }of theworkingmedium is arbitrary but given. The initial densitymatrix ρ of
the same is diagonal in the energy basis. Thefinal energy spectrum F{ } and diagonal densitymatrix σ are also
arbitrary but given.

The agent can combine thermalization (defined above) andwork extraction (also defined above) in any
sequence. This sequence, togetherwith the specifications for each step is called the agentʼs strategy.

In a single-shot implementation of the strategy therewill be a transfer of some energy ν to thework
extraction reservoir. Before the extraction the agentmust specifyW. If Wν ⩾ and thefinal state conditioned on

Wν ⩾ is σ, thework extraction is termed successful (or else a failure). The probability of success is called 1 ε− .

A crucial quantity wewill be interested in calculating is the optimal work that the agent can be guaranteed to
extract or need to insert. Before defining this quantitymathematically we recall amotivation for being interested
in it: consider a scenario where some process is activated only if the thework reservoir energy goes above a
certain threshold. One is then interested inwhether this threshold is guaranteed to be exceeded. This is as
opposed to the standard paradigmof focussing on the average energy increase in the reservoir. This is a key
difference between the single-shot paradigm and average paradigm.

Definition 6 (Guaranteedwork). For a given strategy S, and a given initial state there is a probability distribution
of work transferred to the reservoir, p ( )S  .We denote thework guaranteed up to a probability of failure ε

associatedwith that strategy asWS
ε, and define it through the equation

W y pmax : ( )d .S

y

S
0

 ∫ ε= ⩽ε

For an initial HamiltonianHi, densitymatrix ρ and tolerated probability of failure ε, there is a set  of
allowed strategies which succeedwith probability greater than or equal to 1 ε− .We denote the optimal work
guaranteed (up to failure probability ε) for the given initial and final conditions byW H H( , , )i fρ σ→ε and
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define it as the optimal work over all the allowed strategies in the set:

( ) ( )W H H W H H, , sup , , .i f
S

S i fρ σ ρ σ→ ≔ →ε ε

∈

(Note that this quantitymay be negative in the case wherework is required to effect the given change in state and
Hamiltonian).

A.5. Notation reminder
To assist the reading of the proofs belowwe collect key notation in the following:

Definition 7 (Notation). We shall use the following notation:

s ⃗∈{0,1}m: a vector with one entry for each ofmwork extractions (subsequently called ‘steps’):
s 1j = : system is in one of the energy levels chosen forwork extraction.

sj= 0: system is not in one of the states chosen forwork extraction s ⃗ is called a path. ŝ j is the complement of sj:

s s1 ˆ 0j j= ⇔ = and s s0 ˆ 1j j= ⇔ = .

ws ⃗
j: logarithmical work (kT w Wln( )s

j
s
j=⃗ ⃗ ) extracted in step j on path s ⃗.

wj: The logarithmical work one extracts in step j if the specified level is occupied.

W: work demanded in order to call the total extraction successful (see definition 5).

w= exp(W/(kT)): total logarithmical work demanded in order to call the total extraction successful.

G is the set of successful paths, i.e. those yielding asmuchwork as demanded:

G s w w .
j

m

s
j

1

⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪

∏= ⃗ ⩾
=

⃗

ηs ⃗
j: probability of picking step j on the path s ⃗. I.e. as in definition 4: i( )

s s
j

i

l

s
j

1 1

1

j
∑η λ=

⃗ = = ⃗
− , if the chosen energy

levels for work-extraction in step j are l{1, , }… and s
j 1λ ⃗
− as defined below.

PS: total probability of success:PS s G j s
j∑ η= ∏

⃗∈ ⃗ .

λs ⃗
j: occupation probabilities after step j if the previous evolution of the system is given by the path s ⃗.

ps ⃗
j =G(λs ⃗

j): Gibbs rescaled probability distribution after step j (before thermalizing) conditioned on the previous
steps on path s ⃗.

ps,⃗t
j : Gibbs rescaled probability distribution after step j (after thermalizing) conditioned on the previous steps

on path s ⃗.

A block: for a b< the interval a b( , ] is said to be a block corresponding to a level k, if ps
j
⃗ is constant on this

interval s∀ ⃗.

q: finalGibbs rescaled probability distribution, conditioned on successful work extraction:

q p
P

.
s G

s t
m j

s
j

S
,∑
∏ η

=
⃗∈

⃗

⃗

Bj: Bistochasticmatrix one chooses after step j by thermalizing the system (this has to be the same for all paths).

E j(x): Energy of the level labelled by x after step j.

ΘU(x): Step function associatedwith an intervalU:

{x x U( ) 1 : for
0 : else

.UΘ = ∈
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Appendix B.Upper boundingW
ε

We shall be interested in boundingWε given ε and the initial andfinal conditions.We break the calculation into
several lemmaswhichwill later be combined to prove themain theorem. Butfirstly we give the argument for a
special case of amore restricted set of strategies, in order to give the reader a sense of why relativemixedness
enters as the bounding quantity.

B.1. Instructive special case
Consider zero-risk work extraction such that all levels with non-zero occupation probability are shifted. Note
firstly that after awork extraction byW kT wln( )= the height of theGibbs-rescaled probability distribution is

given by ( ) ( )( ) ( )wexp expi
E W

kT i
E

kT

( )i iλ λ− = −−
, while thewidth gets stretched by a factorw. So the new

Gibbs-rescaled probability distribution is given in terms of the old one as follows: p x( )
P x w

wnew
( )old= (see

lemma 2 formore details).
Thermalization acts as a bistochasticmatrix on theGibbs-rescaled probability distribution and therefore

(seeHardy et al 1952) p x x p x x( )d ( )d
l l

0 0
thermalized∫ ∫⩾ , if both distributions aremonotonically falling, which

wewill now assumew.l.o.g. Thus after a thermalization and awork extraction the following holds:

p x x p x x

p x w

w
x p x x

( )d ( )d

( )
d ( )d .

l l

l wl

0
new,thermalized

0
new

0

old

0
old

∫ ∫

∫ ∫

⩽

= =

Inductively, after any number of work extractions and thermalizations and total work kT wln( ):

p x x p x x( )d ( )d .
wl l

0
initial

0
final∫ ∫⩾

It follows that themaximal logarithmical work given the initial and finalGibbs-rescaled distributions is given by

w p x x p x xmax s.t. ( )d ( )d ,
wl l

0
initial

0
final∫ ∫⩾

or equivalently in terms of the cumulative distribution functions  ,

w
x

w
x xmax s.t. ( ) .p(initial) p(final)⎜ ⎟⎛

⎝
⎞
⎠ ⩾ ∀

This is precisely the relativemixedness defined in themain section. InHorodecki andOppenheim (2011/2013)
they also arrive at the same result for the zero-risk case (starting froman a priori differentmodel and using
different arguments).

B.2. General case
Wenow turn to the general case.We combine the two previous lemmas to gain another relation between the
Gibbs rescaled distribution at steps j and j 1− .We shall use this later in an iterativemanner to relate the very
first and final Gibbs rescaled distributions.

Lemma4.TheGibbs rescaled probability distributions at steps j and j 1− respectively satisfy the relation

p x w p xw c( )s t
j

k
s s k
j

s s k
j

s s k
j

s s k
j

s s k
j

,
1

0,1
j j j j j

⎜ ⎟⎛
⎝

⎞
⎠∑ η= +⃗

−

=
⃗ = ⃗ = ⃗ = ⃗ = ⃗ =

with constants c 0
s s
j

1j
=

⃗ =
and c aw a

s s
j j

0j
= −

⃗ =
.

Proof. Let w wk s s k
j

j
=

⃗ =
, p pk

j
s s k
j

j
=

⃗ =
, p pj

s t
j1
,

1=−
⃗
− , k s s k

j

j
η η=

⃗ =
. Let c aw a0 1= − and c 01 = . Then:

(

(

(

w p xw c w p xw c

p x aw a w p xw

x aw a p x xw p x

x p x x p x

x p x

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ).

j j

j j

aw Z
j

aw
j

a Z aw a
j

a
j

Z
j

0 0 0 0 0 1 1 1 1 1

0 0 1 1 1 1 1

, 1
1

( 0, ] 1
1

,
1

(0, ]
1

0,
1

j

j

j

1 1

1

1

⎤⎦
⎤⎦

⎤⎦

η η

η η

Θ Θ

Θ Θ

Θ

+ + +

= + − +

= + − +

= +

=

− −

− +
− −

−
−

□
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Wenowuse the above tomake a statement about the relation between the integrals of theGibbs rescaled
distribution at steps j and j 1− .We show that the distribution before step jmajorizes the distribution after the
step, even after the latter has been stretched by the logarithmical work done (w in the case s 1j = , 1 else). This can

be seen as a generalization of the inequality: x p x xd ( )d
l p x w

w

l

0

( )

0
new,thermalized

old∫ ∫⩾ from the above special

instructive case to the case where s 0j = is also possible.

Lemma5. Let j m{1, , }∈ … . Let l Z(0, ]j∈ . Let s {0, 1} m j 1′⃗ ∈ − − . Define s s s s s( , , , 1, , , )j m j1 1 1 1⃗ = … ′ … ′ − −
and s s s s s( , , , 0, , , )j m j0 1 1 1⃗ = … ′ … ′ − − . Then:

(

)

{ }

{ }

p x x

w p xw x

p x x

( )d

( )d

( ) d ,

s

l

t
j

s t
j

s

l
j

s
j

t
j

s t
j j

s
j

t
j

s t
j

0,1
0

,

0,1
0

1 1 1
,

1 1

1 1
,

1

j

j

0

1 1

0 0

∫

∫

∑

∑

τ

η τ

η τ

◦

⩾ ◦

+ ◦

⃗∈
⃗

⃗∈

+
⃗
+ +

⃗
+ +

⃗
+ +

⃗
+

where t
jτ is the permutation of any blocks, whichmaximizes the left hand side, while t

j 1τ + is the onewhichmaximizes
the right hand side.

Proof. Let p ps t
j

1 ,
1

1
= ⃗

+ , p ps t
j

0 ,
1

0
= ⃗

+ , s
j

1
1

1
η η= ⃗

+ , s
j

0
1

0
η η= ⃗

+ , w w j 1= + .

( )

{ }

{ }

{ } { }

p x x

w p xw p x aw a x

w p xw p x aw a x

( )d

( ) ( ) d

˜ ( ) ˜ ( )d ,

s

l

t
j

s t
j

s

l

t
j

t
j

s

l

s
a

l a l

0,1
0

,

0,1
0

1 1 0 0

0,1
0

1 1

0,1

0 0

j

j

j j

0

1 1

∫

∫

∫ ∫

∑

∑

∑ ∑

τ

η τ η τ

η τ η τ

◦

= ◦ + ◦ + −

= ◦ + ◦ + −

⃗∈
⃗

⃗∈

⃗∈ ⃗∈

+ −

where thefirst equality is exactly lemma 4. In the second equality l a l(0, min( , )]1 ∈ is a valuewhichmaximizes

the right hand side of the last line and τ̃ reorders p
s {0,1} 1j∑ ⃗∈

in descending order in aw(0, ]and p
s {0,1} 0j∑ ⃗∈

in

aw Z( , ]j . This is possible since p1 and p0 have disjoint support, also for different s ⃗, since a in definition 4 has to
be chosen independently of the path. (See lemma 2). This reorderingmaximizes the last line, thus it is equal to
the line above.

After changing variables in the second integral we can translate its bounds by aw l1− + , if we translate the
integrand in the opposite direction applying a second permutation. Thus:

( )

{ } { }

{ }

{ }

p x x w p xw

p x x

w p xw p x x

( )d ˜ ( )

˜ ( )d

( ) ( ) d .

s

l

t
j

s t
j

s

l

s
aw

l aw l

s

l
j j

0,1
0

,
0,1

0
1 1

0,1

0 0

0,1
0

1
1

1 0
1

0

j j

j

j

0

1

1

∫ ∫

∫

∫

∑ ∑

∑

∑

τ η τ

η τ

η τ η τ

◦ = ◦

+ ◦

= ◦ + ◦

⃗∈
⃗

⃗∈

⃗∈

+ −

⃗∈

+ +

Applying any bistochasticmatrix B̃ on the probabilities p0 and p1 and reordering in descending orderwith t
j 1τ +

afterwards, we get (wewrite B B˜ ( )j 1 1τ= ◦ + − for convenience, then B is again bistochastic):
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( )

( )

( )

{ }

{ }

{ }

{ }

p x x B

w p xw p x x

w B p xw B p x x

w p xw p x x

( )d ( )

( ) ( ) d

( ) ( ) d

( ) ( ) d ,

s

l

t
j
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j

l
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j j

s

j j

s

l

t
j

t
j

s

l

t
j
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j

t
j
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j
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0

,
0

1 1 1

0,1

1
1

1 0
1

0

0,1
0

1
1

1 0
1

0

0,1
0

1
1

,
1

0
1

,
1

j

j

j

j

0

1 0

∫ ∫

∫

∫

∑

∑

∑

∑

τ τ τ

η τ η τ

η τ η τ

η τ η τ

◦ ⩾ ◦ ◦ ◦

× ◦ + ◦

= ◦ ◦ + ◦ ◦

= ◦ + ◦

⃗∈
⃗

+ + −

⃗∈

+ +

⃗∈

+ +

⃗∈

+
⃗
+ +

⃗
+

where the inequality follows out of the inequality Bp p≻ for any bistochasticmatrixB and vector p, which is
proved inHardy et al (1952). □

The above lemma is themain ingredient for the first part of themain theorem and the rest of the proof is
straightforward.

Theorem (First part of theorem 1 inmain body, giving the bound). In the work extraction game defined above, if one
is given an initial densitymatrix e e

i i i i∑ρ λ= ∣ 〉〈 ∣and final densitymatrix f f
j j j j∑σ ν= ∣ 〉〈 ∣with e{ }i∣ 〉 , f{ }j∣ 〉

the respective energy eigenstates and both ρ andσ having finite rank, then the workW ε one can extract with certainty
except with ε probability respects

( )W kT M
G

Gln
( )

1
( ) .S

T H
T H

( , )
,

i
f

⎛
⎝
⎜⎜

⎛
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⎞
⎠⎟

⎞
⎠
⎟⎟ρ

ε
σ⩽

−
∥ε

Proof.Define p ps
0 =′⃗ .W.l.o.g. s {0, , 0}′⃗ = … (the first probability distribution is independent of the path

afterwards). Inductively using lemma 5 one gets:
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d
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s
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⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
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⎞
⎠
⎟⎟
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⎝
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⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
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∫ ∫

∫

∫

∫

∫ ∫

∑ ∏ ∏ ∏

∑ ∏

∑ ∏

∑ ∏

η τ

η τ

η τ

η τ

=

⩾ ◦

= ◦

⩾ ◦

⩾ ◦ =

∏

∏

′⃗

⃗∈ =
⃗

=
⃗ ⃗

=
⃗

⃗∈ =
⃗ ⃗

⃗∈ =
⃗ ⃗

⃗∈ =
⃗ ⃗

=
⃗

=
⃗

where t
mτ is the permutationwhichmaximizes the expression of the right hand side of thefirst inequality

(t stands for ‘after thermalizing’, whilem stands for themth time one applies lemma 5). Therefore (with
P 1S ε= − ):

( )

W kT w

kT m p x x q x x l

kT M
G

G

ln( )

ln max ( )d (1 ) ( )d

ln
( )

1
( ) .

l lm

T H
T H

0
1 1

0
2 2

( , )
,

i
f

⎛
⎝
⎜⎜

⎧⎨⎩
⎫⎬⎭

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

∫ ∫ ε

ρ
ε

σ

=

⩽ ⩾ − ∀

=
−

∥

ε

This proves thefirst part of themain theorem. □
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AppendixC.Upper boundW ε given by relativemixedness is achievable

This section concerns the second statement of themain theorem (theorem1).We specify a protocol that
achieves the bound given in theorem1, i.e. it extractsW ε ofworkwith a failure probability no greater than ε. The
protocol is within the rules of the game (defined in sectionA). The protocol works for the initial (ρ) andfinal (σ)
states taking the form ...ρ ξ ξ= ⊗ ∣ 〉〈 ∣and ...σ ξ ξ= ⊗ ∣ 〉〈 ∣, where ξ∣ 〉 is one of the energy eigenstates of a
systemwith two energy eigenstates in total. This is a small restriction. It amounts to allowing the agent an extra
two-level system in a known state, working as a catalyst in the sense that it aids the process but is ultimately
unchanged by it.

C.1. Guiding example
Before giving the general protocol it is instructive to consider an example.We beginwith a densitymatrixϕwith
energy eigenvalues E j( )i , occupation probabilities j( )iλ andAi defined by ( )A j( ) expi

E j

kT

( )i= −
. These are given

by:

A
2

3
,

1

3
, 0

1

3
,

1

3
,

1

3
i i⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠λ = =

and therefore:

p x

x

x

x

( )

2, 0,
1

3

1,
1

3
,

2

3

0,
2

3
, 1

. (C.1)i
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⎜
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⎪⎪⎪
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⎪⎪⎪
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⎛
⎝
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⎝
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=

∈

∈

∈

Thefinal state wewant to reach is defined through:

A
1

2
,

1

2
, 0

1

6
,

1

3
, 0 ,f f⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠λ = =

and therefore:

p x

x

x

( )

3, 0,
1

6
3

2
,

1

6
,

1

2

. (C.2)f
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⎛
⎝

⎤
⎦⎥
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With a risk 1

2
ε = thework for this game is limited by ( )( ) ( )W kT M p kTln ln

p

f1

4

3
i= ∣∣ =
ε−

. In this

example we showhow this amount of work can be extracted.
Wefirst want to raise asmany energy levels as we can to infinite energy, such that if we succeed (i.e. if these

levels are empty and the action therefore costs 0work)we start with amore known state. Unfortunately the sum
of the occupation probabilities of the lowest levels will never yield exactly ε, sowe need to change thisfirst.

We start by raising the empty energy level to infinite energy, such that even if onemixes it completely with
any other energy level it will stay empty. Thenwe lower the energy of the empty level, while constantlymixing
this level with the first one. At the same timewe enhance the energy of the first level, such that in total the energy
of thework reservoir is unchangedwith probability 1 (the details of this action can be found below in definition 9
and the following lemma).We then have:

A
1

2
,

1

3
,

1

6

1

4
,

1

3
,

1

3
1 1⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠λ = =

p x

x

x

( )

2, 0,
1

3

1,
1

3
,

2

3
.

1

⎜

⎜

⎧
⎨
⎪⎪

⎩
⎪⎪

⎛
⎝

⎤
⎦⎥

⎛
⎝

⎤
⎦⎥

=
∈

∈

The lowest two occupation probabilities now sumup to ε.We enhance the energy of these two levels by doing a
work extraction changing the energy of their states by∞.With probability 1 1

2
ε− = we get thework 0 and the

state:

( )A(1, 0, 0) , 0, 02 2
1

4
λ = =
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p x x( ) 4, 0,
1

42
⎜⎛⎝

⎤
⎦⎥= ∈

which in this case is a pure state (the state would not have been pure if we had chosen ε to be smaller than 1

3
).

With probability 1

2
we get thework−∞, inwhich case thework extraction cannot be successful in total. So in the

case where thework extraction is successful the above state is the only onewe need to consider.

Nowwe extract thework ( )W kT ln 4

3
= on all the levels. This succeeds with probability 1. The state

afterwards is given by:

(1, 0, 0)3λ =

A
1

3
, 0, 03 ⎜ ⎟⎛

⎝
⎞
⎠=

p x x( ) 3, 0,
1

3
.3

⎜⎛⎝
⎤
⎦⎥= ∈

Againwe need two levels wherewe only have one. Acting again as defined in definition 9 on thefirst two levels we
can get:

1

2
,

1

2
, 04 ⎜ ⎟⎛

⎝
⎞
⎠λ =

A
1

6
,

1

6
, 04 ⎜ ⎟⎛

⎝
⎞
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p x x( ) 3, 0,
1

3
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⎜⎛⎝
⎤
⎦⎥= ∈

The energy of the second level is now too high andwe need to lower it by kT ln(2):

A

(1, 0, 0), with  probability
1

2

(0, 1, 0), with  probability
1

2

1

6
,

1

3
, 0 .

5

5 ⎜ ⎟

⎧
⎨
⎪⎪

⎩
⎪⎪
⎛
⎝

⎞
⎠

λ =

=

Thework extracted in this step is in both cases at least 0. So bymeasuringwhether the energy in thework-

reservoir has been enhanced by at least ( )W kT ln 4

3
= , we get a ‘yes’ and thewantedfinal state with probability

1

2
.

C.2. General case
Tomake the idea clearer we start giving the general algorithm andwill then give the proof of the second part of
themain theorem, which builds on lemmas proved later on.We assume here that we have at least n 2 energy
levels with 0 occupation probability, butmake sure that in the end these levels have again 0 occupation
probability (note, that this does not change the upper bound for thework).We assume that the levels are ordered
in descending order of their Gibbs rescaled probability.

Definition 8 (Work extraction algorithm (see figureC1)). Let p and pf beGibbs rescaled probability
distributions of two states ρ and σ, with the same number of levels n.

Let ρ, σ have at least n 2 levels with occupation probabilities 0eλ = .
DefineW kT M p qln( ( , ))= ε .

(i) Do awork extraction on the levels k n1, ,+ … by−∞ (such that their width becomes 0).

If there is no k for which i1 ( )
i

k

1
∑ε λ− =

=
:

Split the level k for which i i( ) 1 ( )
i

k

i

k

1

1

1
∑ ∑λ ε λ< − <

=

−

=
(see the corollary to lemma 7, below).

(ii) Make a work extraction on all levels by W (i.e. stretch their Gibbs rescaled probability distributions such
that it justmajorizes thefinal one).

(iii) Thermalize the obtained state to get the final state (up to permutation).

(iv) Permute the levels of the obtained state such, that one gets thefinal state.
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Theorem6 (Bound can be achieved (second part ofmain theorem)). Let p and pf beGibbs rescaled probability
distributions of two states ρ andσ, with the same number of levelsn.

Let ρ,σ have at least n 2 levels with occupation probabilities 0eλ = .

DefineW kT M p qln( ( , ))= ε .

Thework extraction algorithmon ρ yields theworkWwith probability 1 ε− . If thework extraction is
successful, thefinal state is given by σwith probability 1.

Proof.Thework extraction in step 1. succeeds with probability ε and if it does not succeed it yields 0work (else
−∞).

After step 1. The occupation probabilities are given by i( ) i
1

( )

1
λ = λ

ε− for i k1, ,= … (post-selecting on the

case, inwhich the state was not one of the less likelier) and i( ) 01λ = else (if thework extraction ‘succeeds’
and our algorithm fails). See the corollary to lemma 7, below.

After step 2. By the definition ofWwehave that p i p i( ) ( )f2 ≻ , the extractedwork isW. Therefore one can

thermalize the obtained state to get the final state ρ (up to permutation) with probability 1 (see lemma 8,
below). After the permutation (if the levels have some special physicalmeaning) we get thefinal state ρwith
probability 1.

In total we get the final state ρwith probability 1, if thework extraction succeeds and the extractedwork isW
with probability 1 ε− . □

To start, we need some algorithmwhich allows us to shift some probability fromone level to the other, if they
are in thermal equilibrium.We onlywant to change these two levels (say j, k), so the sumof their occupation
probabilities remains constant ( constj kλ λ+ = ). Alsowe hope to be able to do this without needing to do any

FigureC1.Work extraction algorithm:we choose the last levels such that the sumof their occupation probabilities equals ε, thenwe
lift them to infinity, which succeedswith probability 1 ε− (step 1). Afterwards we extract thework W ε and get a state which still
majorizes thewantedfinal one (step 2). Thuswe can get to thewanted state by doing a thermalization (step 3, see lemma 8).
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work, sowe keep our total knowledge of these levels constant. To achieve this it seems a good idea to have
p p constj k+ = and constantly thermal equilibrium. This is the guiding idea for the following algorithm.

Instead of doing this (rather complicated) proof one also could have assumed that one can split levels in a
physical fashion (see the corollary to the next lemma for details). Then onewould have got the ‘isothermal shift’
for free, by simply splitting the level k in two parts and afterwards removing the level j. But this would have been a
further assumption. So the following definition and subsequent lemma can also be seen to show it possible (in
principle) to achieve a splitting of a level by just having one further empty level a heat bath and awork reservoir
(which remains untouchedwith probability 1).

Definition 9 (Isothermal shift of boundary (see figure C2)). Let ( )A j( ) exp
E

kT

j=
−

, where Ej is the energy

eigenvalue of the jth level.
Let the levels j, k j 1= + have the sameGibbs rescaled probability.We call the limit n → ∞of the

following process an isothermal shift of the boundary between j and k by ( )w ,
A j

A j A k

A k

A j A k

( )

( ) ( )

( )

( ) ( )
∈ − + +

in

direction k:

(i) Do a permutation, which brings the level j in front and level k as second.

(ii) Do awork extraction on level j by:

w
w

n

A j A k

A j
1

( ) ( )

( )
.1 = +

+

(iii) Do a permutation, which brings the level k in front and level j second.

(iv) Do awork extraction on level k by:

w
w

n

A j A k

A k
1

( ) ( )

( )
.2 = −

+

(v) Do a thermalization totally mixing the two levels j and k and letting all others untouched (i.e. the matrix
with entries 1 2 in (1, 1), (1, 2), (2, 1) and (2, 2) and m l,δ everywhere else, such that the first entry of the
vector it is applied on, is the probability of the level j after work extraction and the second is the probability
of the level k).

(vi) Restart with 1. n times in total, redefining A j( ) and A k( ) as above for the probabilities after this process.

(viii) Do a permutation, which brings back the levels j and k j 1= + at their position at the beginning (we show
below, that this is possible).

FigureC2. Isothermal shift: the isothermal shift of the boundary between the levels 2 and 3 in direction 3 leaves p, 2 3λ λ+ and
A A2 3+ invariant, while it increases 2λ andA2. Thework cost is 0.
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Instead of thefirst four actions, we could have simply saidwe do extract theworkw1 on the level j and the
workw2 on the level k. Thenwewould have had to continuewith doing the totalmixing also between these levels
(instead of at the first and second position of thematrix) and so on.Whatwemean herewith doing awork
extraction on the level j is the action: do a permutation bringing the level j in front, extract work, permute the
level back.

In later definitionswewillmake use of this.Here we do not, since the algebrawould get slightlymore
complicated.

The following lemma shows that the above process costs noworkwith probability 1 and that it can indeed be
seen as a shift of the separation between the levels.

Lemma7 (Action of the isothermal shift of boundary). Let ( )A j( ) exp
E j

kT

( )= −
, where E j( ) is the energy eigenvalue

of the jth level.
Let the levels j, k j 1= + have the sameGibbs rescaled probability.

After an isothermal shift of the boundary between j and k by ( )w ,
A j

A j A k

A k

A j A k

( )

( ) ( )

( )

( ) ( )
∈ − + +

in direction k:

(i)

(a)The energy eigenvalues of all levels but j and k remain constant.

(b)At the end ( )A j( ) expf
E j

kT

( )f=
−

is given by A j A j w A j A k( ) ( ) ( ( ) ( ))f = + + and for the level k:

A k A k w A j A k( ) ( ) ( ( ) ( ))f = − + (E j( )f is the energy of the eigenvalue j after the shift).

(ii) With probability j k1 ( ( ) ( ))λ λ− + , the occupation probabilities of the final state are given by l

j k

( )

1 ( ( ) ( ))

λ
λ λ− +

for l j k,≠ and 0 for l j k,= .

(iii) With probability j k( ) ( )λ λ+ , the occupation probabilities of the final state are given by
A l

A j A k

( )

( ) ( )

f

+
for l j k,=

and 0 else.

(iv) With probability 1 the energy in the work reservoir is changed byW=0.

Proof. 1(a) Just follows out of the algorithm, sincewe did not do anywork extraction on any levels and this is the
only waywe can change energies in our game. For 1.(b)we need to look at how the energy eigenvalues of the jth
and kth level change each of the n times one goes through the algorithm in definition 9. directly from the
algorithmwe get, that in the first time one goes through it A j( ) changes to ( )A j( ) exp

E j kT w

kT1
( ) ln( )1= − +

andwe

get A j w A j A j A j A k( ) ( ) ( ) ( ( ) ( ))w

n1 1= = + + and by the same argument A k w A k A k( ) ( ) ( )1 2= = −
A j A k( ( ) ( ))w

n
+ . Since A j A k A j A k( ) ( ) ( ) ( )1 1+ = + we see, that after l times one goes through the algorithm,

one ends upwith: A j A j l A j A k A j A k A j l A j A k( ) ( ) ( 1) ( ( ) ( )) ( ( ) ( )) ( ) ( ( ) ( ))l
w

n

w

n

w

n
= + − + + + = + +

and A k A k l A j A k( ) ( ) ( ( ) ( ))l
w

n
= − + .With l= nwe get what is stated in 1 (b).

In order to derive 2 and 3we need to have a closer look at how the occupation probabilities change each of
the n timeswe go through the algorithm. The occupation probabilities are given by theGibbs rescaled
probabilitiesmultipliedwith the corresponding A l( ).

Let q be theGibbs rescaled probability distribution after step 1. of the ith time one goes through the algorithm
in definition 9. After step 2we have:

(

(

q x

q
x

w
x

w q
q

q x A w A x

q
q

( )

( )

( )
, with prob. ( )

( ) ( )

1 ( )
, with  prob.1 ( ),

A

j
j

j j A Z q

j
j

1
0,

1

1 , ( )

j

j

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪

⎛
⎝⎜

⎞
⎠⎟ ⎤⎦

⎤⎦

Θ

η
η

Θ

η
η

⇒
− +

−
−

where q q x x( ) ( )dj

A

0

j∫η = and Z q( ) is the partition function of q.
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After step 4we thus have:

( )

(

(

q
x

w
x

w q
q

q
x A

w
A A w A x

w q
q

q x A w A w A A x

q q
q q

( )

( )
, w. prob. ( )

( )

( )
, w. prob. ( )

( )

1 ( ) ( )
, 1 ( ) ( ).

A

k
k

j
j k k A A A

j
j

j k k j A A Z

j k
j k

2
( 0, ]

2

1
2 ,

1

1 2 ,

k

k k j

j k

⎧

⎨

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪
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+

+

Noting that q x q x w( ) ( )2= for x A(0, ]k∈ and similarly for x A A A( , ]j k j∈ + and
x A w A w A A xj k k j1 2− − + + = , we can rewrite this as:

(

(

q x x

w q
q

q x x

w q
q

q x x

q q
q q

( ) ( )

( )
, w. prob. ( )
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⎪⎪⎪⎪
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Whichmeans that after step 5we get:

(

(

(

q x x

w q

w q

q q
q

q x x

w q

w q

q q
q

q x x

q q
q q

( ) ( )

( )

( )

( ) ( )
, ( )

( ) ( )

( )
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( ) ( )
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, 1 ( ) ( ).

A A

k

k
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k
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j

j
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j
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1

1

,
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For 2 note thatwith probability j k1 ( ( ) ( ))λ λ− + we get after the first time one goes through the algorithm:
q q 0j k= = (which justmeans, that the state ismeasured to be orthogonal to j and k). And therefore in the

subsequent stepswe have q q( ) ( ) 0j kη η= = . Sowe getwith probability j k1 ( ( ) ( ))λ λ− + , thefinal probability

distribution:

(p x x

j k

( ) ( )

1 ( ( ) ( ))
.

A A Z,j k
⎤⎦Θ

λ λ− +
+

Since the energy eigenvalues of these levels are unchanged, we get l

j k

( )

1 ( ( ) ( ))

λ
λ λ− +

for l j k,≠ and 0 for l j k,= for

the occupation probabilities, which proves 2.
Thefinal Gibbs rescaled probabilities of the levels j and k have the same value (sincewe completelymix them

in step 5). Their integral ( q x x( )d
A A

0

j k∫ +
), after the first time one goes through the algorithmkeeps 1 (with

probability j k( ) ( )λ λ+ ). As noticed before, A j A k A j A k( ) ( ) ( ) ( )f f+ = + . Thuswe get that with probability

j k( ) ( )λ λ+ the occupation probabilities of the levels are given by:
A l

A j A k

( )

( ) ( )

f

+
for l j k,= and 0 else.Which proves

3.
Suppose in thefirst time one goes through the algorithm the state is orthogonal to the levels j k, : then the

energy in thework reservoir is unchanged throughout thewhole n times one goes through the algorithm and for
this case, 4 follows trivially.

We now look at the other case (the case where the state is projected onto the levels j k, thefirst time one goes
through the algorithm).

Let s {1, 2} n⃗ ∈ . Define (2) 1σ = and (1) 1σ = − . Define
A j

A j A k

( )

( ) ( )
1α =

+
and 12 1α α= − . In the lth

time one goes through the algorithmone either gets the logarithmical work
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or the similarly derivable value for w (2)l (Al is defined in the proof of 1(b)). Thuswe canwrite:

w s
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In total we get the logarithmical work:

w
s l

w

n

s l
w

n

( )

( )( 1)l

n s l

s l

tot

1

l

l

∏
α σ

α σ
=

+

+ −=

with probability (given, that we have the case where the state is projected onto the levels j k, thefirst time one
goes through the algorithm):

P s j k s l
w

n
( ) ( )( 1) .

l

n

s l

1

l
⎜ ⎟⎛
⎝

⎞
⎠∏ α σ⃗ ∨ = + −

=

The expectation value ofwtot can be computed as follows (for n < ∞):

E w P s j k w s s l
w

n

s l
w

n

l l
w

n

( ) ( ) ( ) ( )

( )

( ( ) (2)) 1.

s s l
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l
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n

tot tot

1

1

1

1 2

1 0

l

l

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟   

∑ ∑∏

∏ ∑

∏
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⃗ ⃗ =

= ⃗

=
= =

Wenow look at howmuch theworkW wln( )tot= changes, if in step l one replaces sl by ŝl (remember that
s s0 ˆ 1j j= ⇔ = and vice versa):

W s s W s s s

s l
w

n

s l
w

n

s l
w

n

s l
w

n

( , , ) ( , , ˆ , , )
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( )
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⎜⎜⎜
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⎞
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=
+

+ −
−

+

+ −

with c w s( )lσ= (and therefore w s c(ˆ )lσ = − ), a sl
α= (and a1ŝl

α = − ), x a c l

n
= + and y a c1 l

n
= − − we

get:
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x
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n
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⎞
⎠

⎛
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⎞
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⎞
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−
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−
⩽ ≕

Using theMcDiarmid inequality (McDiarmid 1989) we get that the probability thatW differs from its
expectation value is bounded by:
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( )P W s E W
q

n
z

( ) ( ) 2 exp
2

2 exp
2

1

l
l

2

2

2

2

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟∑
δ δ δ⃗ − ⩾ ⩽ − ⩽ −

which tends to 0 for any 0δ > . Thereforewe get that thework in this process is given by 0with probability 1,
which proves 4. □

Corollary.Using the above lemma one can split up any level k into two parts by using an empty level e:

(i) Permuting the levels such, that the empty level e comes before the level k.

(ii) Doing a work extraction by∞ on the level e (such that its energy is∞, while its width is 0, this costs no work,
since the level is empty).

(iii) Do an isothermal shift of the level e in direction k by w (0, 1)∈ .

Then by the previous lemma the final overall distribution is the same as the initial, apart from the two levels e and
k, which have now occupation probabilities:

e w k( ) ( ),fλ λ=

k w k( ) (1 ) ( )fλ λ= −

and have energiesEwith E kT Aexp( )k− = :

A e wA k( ) ( ),f =

A k w A k( ) (1 ) ( ).f = −

The corollary directly follows from the lemma.Next we need an algorithmwhichmakes it possible to get the end
state σ out of the initial state ρ, if p pf≻ (the generalization of the step 4 5→ in the example).

The idea for the algorithm is that wefirst take the biggest eigenvalues of ρ, such that their area (i.e. the sumof
their occupation probabilities) is equal to the biggest occupation probability ( (1)fλ of σ). Thenwemix them

andmake awork extraction, such that their total width (i.e. the sumof E j kTexp( ( ) )− ) is the same as that of the
final energy level 1. thenwe continuewith the second and so forth.

Towrite down the algorithm,we first need twodefinitions simplifying the notation:

Definition 10 (Generalized sum). If c ∈ , c 1⩾ , we define d d c c d( )
i

c

i

i

c

i c

1 1

∑ ∑≔ + − ⌊ ⌋
= =

⌊ ⌋

⌈ ⌉. If c ∈ ,

c0 1⩽ < , we define d c d·
i

c

i

1

1∑ ≔
=

.

(Note that the above definition reduces to the usual sum if c ∈ ).

Definition 11 (Gibbs-equivalent andGibbs-expanding (see figureC3)). We say two tuples of H( , )iρ , H( , )fσ
areGibbs-equivalent (for a given temperature) if they give rise to the sameGibbs-rescaled distribution (where
both are defined, 0 else). A transform is similarly said to beGibbs-equivalent if it changes a tuple to aGibbs-
equivalent one. Finally a transform is said to beGibbs-expanding if it changes a tuple H( , )iρ to another one

H( , )fσ with G G( ) ( )T Tρ σ≻ .

Lemma8 (Optimal Gibbs-expanding transforms). Let ρ, σ be two states, diagonal in their energy-basis of dimension
n.Let ρ andσ have at least n 2 empty levels. Let G G( ) ( )T Tρ σ≻ .

Then one can transform ρ intoσwith 0work with probability 1.

In other words: optimal Gibbs-expanding transforms exist and yield at least 0 work.

Proof.W.l.o.g. let the levels of ρ and σ be ordered in descending order.
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Let j( )i f( )λ denote the jth level of the initial (final) state.

Define a1 ∈  as the number of needed levels of ρ s.t. the total area is equal to the area at the end:

j( ) (1)
j

a
i f

1

1∑ λ λ=
=

(if a1 ∉ one needs to split the level a1⌈ ⌉as in the above corollary).

Define c as thewidth of the finalfirst level:

A j A( ) (1),
j

c
i f

1
∑ =

=

where A j E j kT( ) exp( ( ) )i f i f( ) ( )= − .

Nowwe get because of G G( ) ( )T Tρ σ≻ :

G x G x( )d ( )d
A

T
A

T

0

(1)

0

(1)f f∫ ∫ρ σ⩾

which by A A j(1) ( )f j

c
i1

∑= =
can be stated as:

A j
j

A j
A

A
j( ) ·

( )

( )
(1) ·

(1)

(1)
(1) ( )

j

c

i
i

i
f

f

f
f

j

a

i

1 1

1⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑λ λ

λ λ⩾ = =
= =

FigureC3.Gibbs-expanding transforms: one can get a state σ out of a state ρ if p pi f≻ (with pi theGibbs rescaled probability

distribution of ρ and pf that of σ), by doing the following steps for eachfinal energy level (j): take asmany levels (or part of levels) as
needed, such that the sumof their occupation probabilities equals the occupation probability of the level j (first and second pictures).
Then thermalize and do awork extraction to stretch the distribution to thewanted size (third–to–fourth picture). The final

/A j E j kT( ) exp( ( ) )f = − is bigger than the initial sum, because of p pi f≻ —therefore it is really a stretching andnot a squeezing: the

extractedwork is at least 0.
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therefore: c a1⩾ andfinally:

( )
( )

j

A j

j

A j A

( )

( )

( )

( )

1

1

j

a
i

j

a
i

j

a
i

j

c
i

f

f

1

1

1

1

1

1

1∑
∑

∑
∑

λ λ λ
⩾ ==

=

=

=

whichmeans that one can change the energy of thefirst a1 such that it is equal to the energy of the level 1 at the
end, with 0 risk at no cost, since either successful or not, the energy gainedwill be at least 0. The occupation
probabilities λwill obviously not be changed by this (apart the totalmixing of the first a1 levels). Nowwe could
go on and prove the same for the second level and so forth, but there is an easier way:

The only ingredient we needed for the above reasoning toworkwas G G( ) ( )T Tρ σ≻ . But this is equivalent
to G K G K( ) ( )T Tρ σ− ≻ − for any constantK, especially for K (1)fλ= . Explicitly:

G x G x l( )d (1) ( )d (1) .
l

T
f

l
T

f
0 0
∫ ∫ρ λ σ λ− ⩾ − ∀

Remembering j A j
j

A j
(1) ( ) ( ) ·

( )

( )
f j

a
i j

a
i

i

i
1 1

1 1
⎛
⎝⎜

⎞
⎠⎟∑ ∑λ λ

λ
= =

= =
the above can be rewritten as:

( )
G x G x l( )d ( )d

A j

l
T

A

l
T

( ) 1
j

a
i f1

1∫ ∫ρ σ⩾ ∀
∑ =

i.e. we get the same requirement for the remaining levels.Whichmeans, that we can inductively apply our
argument. Since the number of non-empty levels of σ is atmost n 2 it follows that we need atmost n 2 empty
levels to be able to split all the levels at the right place. □

With this lemmawe can now classify the operationswhich cost 0work (with risk 0) and their reverse also
costs 0work: these are exactly thosewhich do not change theGibbs-rescaled probability distribution and are
optimal:

From the above lemma it follows that any optimal Gibbs-equivalent transform costs nowork. Secondly, if
the initial and the final state areGibbs-equivalent such a transform exists (again by the above lemma), so it is
reversible. On the other hand if a transform is notGibbs-equivalent either it or its reverse costmore than 0work
(by thefirst part of theorem1).

As an aside: this, together with the triangle inequality, proves that the symmetrized version of themixing
distance D a b a b b a( , ) ( ) ( ) 0M M= ∥ + ∥ ⩾ is ametric on the set of probability distributions on the positive
reals ordered in descending order.

AppendixD. Entropy increase law

Consider the interaction of theworkingmedium systemwith the heat bath. Let S be theVonNeumann entropy
of the system, β the inverse temperature associatedwith the bath, and E E

i i i∑ λ〈 〉 = the expected internal

energy of the system. This section compares the standard law for entropy increase:

S E , (D.1)Δ βΔ⩾

with the onewe propose should replace it:

W ( ) 0. (D.2)0 ρ ρ→ ′ ⩾

D.1.Ourmodel respects standard expression

Lemma9. In themodel for thermalization used here equationD.1 is always respected.

Proof.Wefirstly recall themodel and define certain notation.

Recall that the thermalizationmodel states that when two levels, 1 and 2, are coupled to the heat bath, their
ratio 1 2λ λ gets closer to E Eexp( ( ))1 2β− − , and the other λʼs are untouched. In ourmodel onemay concatenate
several such interactions to implement any allowedmulti-level interactionwith the bath. It will therefore suffice
to show that equation (D.1) holds for a single two-level interactionwith the heat bath.

For notational convenience let the probability of being in level 1 or 2 be called 12 1 2λ λ λ≔ + . This is then
constant for the given two-level interactionwith the bath. In the extreme case of the two levels interactingwith
the bath for an arbitrary amount of timewe have T

1 1λ λ≔ and T
2 2λ λ≔ (T reminds us of the temperature

dependence). These valuesmust then obey the relation
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E Eexp( ( )). (D.3)T T
1 2 1 2λ λ β= − −

Wealso assumewithout loss of generality that E E2 1⩽ . This implies that 0.5T
1 12λ λ⩽ .

Nowwe begin to prove the statement. Firstly we simplify SΔ by noting that only two levels change their
probabilities.Wewrite

S

S

log

log ( )log( ) log

log .

i

i i

i

i

i i

i

i

i i

1 1 12 1 12 1

3

12

3

max

max

∑

∑

∑

λ λ

λ λ λ λ λ λ λ λ

λ λ

= −

= − − − − −

≡ −

=

=

We see that in any two-level interaction

S S . (D.4)12Δ Δ=

It is helpful to re-express S12 in terms of an actual entropy S12 , so that we can use knownproperties of
entropies tomake statements about S12.We let 1 1 12λ λ λ≔ and 2 2 12λ λ λ≔ such that 11 2λ λ+ = .We define

S log log .12 1 1 2 2λ λ λ λ≔ − −

One can then see in a few lines of algebra that

S S log .12 12 12 12 12λ λ λ= −

It follows that

S S . (D.5)12 12 12Δ λ Δ=

Weaccordingly nowwant to show that S E .12 12λ Δ βΔ⩾ 〈 〉
Wecan nowuse awell knownproperty of the Shannon/vonNeumann entropy: S12 is concave in

1 1 12λ λ λ= . The function is accordingly upper bounded by any tangential line, as infigureD1 . Consider the

tangential line at T
1 1λ λ= . At that point it follows froma few lines that

S S E E
d

d

d

d
( ). (D.6)

1
12

1
12 1 2T

1 1λ λ
β= = −λ λ=

Note now that E〈 〉may similarly to the entropy bewritten as

E E E E ,
i

i i 12 rest∑λ= − ≡ +

such that E E E E( )( )12 1 1 2Δ Δ Δλ〈 〉 = 〈 〉 = − , with 1 1 1Δλ λ λ= ′ − the change in 1λ . So E ( )1λ〈 〉 is a linewith
gradient given by

E
E E .

1
1 2

Δ
Δλ

= −

Similarly

E
E E

1
( ).

1 12
1 2

Δ
Δλ λ

= −

Comparing this with the gradient of the tangential line to S12 in equation (D.6), we see that E
1

12
12λ

β 〈 〉 has

the same gradient as the tangential line.We therefore only need to show that the change in the tangential line is

upper bounded by the change in the entropy curve, as it is equivalent to showing that S E12
1

12
12

Δ β⩾ 〈 〉
λ

. This

must hold for all possible initial andfinal values of 1λ and all possible values of T
1λ (recall that we assumed

without loss of generality that 0.5T
1λ ⩾ ). These can be grouped into three cases.

(i) T
1 1λ λ⩽ . Here the tangential bound above implies that S E 012 12

12
Δ ⩾ 〈 〉 ⩾β

λ
.

(ii) 0.5T
1 1λ λ⩽ ⩽ . Here the tangential bound implies that S E0 12 12

12
Δ⩾ ⩾ 〈 〉β

λ
.

(iii) 0.51λ ⩾ , also after the interaction.Here the tangential bound implies that S E012 12
12

Δ ⩾ ⩾ 〈 〉β
λ

.

This implies the lemma. □
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D.2. Evolutions respecting standard expressionmay violate Kelvin’s second law
Recall that our condition on thermalizing evolutions was stronger than equation (D.1). There are, asmentioned
in themain body, examples of evolutions that respect equation (D.1) but violate our condition: equation (D.2).
In this sectionwe consider whether these evolutionsmay violate Kelvinʼs second law: no process is possible in
which the sole result is the absorption of heat from a reservoir and its complete conversion into work.

Weuse standard results concerningmajorization, as well as ourmain theorem.Wewill consider degenerate
energy levels for simplicity so that equation (D.1) reduces to S 0Δ ⩾ .We nowonly assume that the evolution is
represented by a stochasticmatrix (which it is if themap isMarkovian).We do not assume it is the type of
thermalization used hitherto as thatwould automatically respect equation (D.2).

Lemma10.Any stochastic matrix Awhich for some state violates equation (D.2) but respects the entropy condition
S 0Δ ⩾ will for some input state, namely the uniform distribution, violate S 0Δ ⩾ .

Proof.

(i) Equation (D.2) is respected iff thematrix is bistochastic. ThusA isNOTbistochastic.

(ii) The uniform distribution is invariant under a stochastic matrix iff it is bistochastic.Thus A does NOT
preserve the uniformdistribution. Now the uniformdistribution is unique in havingmaximal von
Neumann entropy. Thus S 0Δ ⩾ is violated if the input state is the uniformdistribution.

Lemma11.Consider a state changing to another one. Suppose: (i) the vonNeumann entropy is increased, (ii)
equation (D.2) is violated , and (iii) the evolution is a stochastic matrix. Then this evolution–applied to the thermal
state–would allow for the violation of Kelvinʼs second lawwithin our game: deterministic work extractionwould be
possible from a cycle where the system is in the thermal state both initially and finally.

Proof.Recall that we are for simplicity considering degenerate energy levels in this section. The thermal state
is then the uniformdistribution. Apply A to this (at nowork cost as it represents an interactionwith the
heat bath). Nowwe have a state σ other than the uniformdistribution, so itmustmajorize the uniform
distribution.

To see that this implies deterministicwork extractionwefirstly show thatW 00 > for some process using A
and allowed operations within the game. Consider taking n copies of σ and going to the vonNeumann limit by
taking n to infinity as well as taking the risk of failure ε to 0. To evaluateW ε in this limit it is convenient to use
theorem12which re-expresses W ε. Recall that in the vonNeumann limit the smoothmax entropy reduces to
the vonNeumann entropy S.We therefore have, for the case of degenerate levels:

FigureD1.The entropy S12 is a function of 1λ . The red dot corresponds to the thermal state in question, i.e. T
1 1λ λ= . The tangential

upper bound has gradient E E( )2 1β − .
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W

n
H S kTlim

( )
( ( ) ( )) ln 2,

n

n n

, 0
max

σ τ τ σ→ = −
ε

ε

→∞ →

⊗ ⊗

wherewe have also used thewell-known additivity of both entropies: H nH( ) ( )n
max maxρ ρ=⊗ and

S nS( ) ( )nρ ρ=⊗ In this case dτ =  , i.e. themaximallymixed state associatedwith a d-dimensionalHilbert
space.Moreover H d S( ) ( ) 0max σ− > since the uniformdistribution is unique in havingmaximal von
Neumann entropy and H Smax ⩾ . ThusW 00 > for that process.

Recall secondly the subtlety that we proved thatW ( )σ σ→ ′ε is achievablewithin the gamewhen there is
access to a catalyst system.Consider extractingwork from n copies of σ ξ ξ⊗ ∣ 〉〈 ∣whichwill be set to n copies of

d ξ ξ⊗ ∣ 〉〈 ∣ at the end.Now H d S( ) ( ) 0max ξ ξ σ ξ ξ⊗ ∣ 〉〈 ∣ − ⊗ ∣ 〉〈 ∣ > as neither entropy of a state is
changed by adding a pure system in this way. Thus including the catalyst systemdoes not change the statement
thatW 00 > for the above procedure in the vonNeumann limit. Accordingly this process violates Kelvinʼs
law. □

Appendix E. Recovering the relativemin-entropy

Wenow show that when restricting ourmain theorem to the appropriate limit we recover the result of
equation (2)which, as discussed in themain body, was given inAberg (2012),Horodecki andOppenheim
(2013). Recall that this statement was

( )W kT Dln(2) ,T0 σ ρ= ∥ε ε

which should hold for the case where the final state Tρ is a thermal state on the same energy levels as the initial
state σ.

The definition of D (. . )0 ∥ε is as given inDatta (2009) (where it is called Dmin): D Tr( ) log ( )0 ρ σ Π σ∥ ≔ − ρ ,
where Πρ is the projector onto the support of ρ. The smooth version is defined as

D D( ) sup ( ¯ )B0 ¯ ( ) 0ρ σ ρ σ∥ ≔ ∥ε
ρ ρ∈ ε , where B ( )ρε is the set of states within ε trace distance of ρ.

Onemayfirst consider the special case of degenerate energy levels, as inDahlsten et al (2011) (recall that it
was shown inAberg (2012) that this is a special case of (2). In this case thefinal state (evenwithout theGibbs
rescaling) is a uniformdistributionwith support d at least as large as that of the initial state and taken to
physically correspond to the systemdimension (for n qubits or bits d 2n= ). The relative entropy expression
becomes in this case

D d d H( ) log ( ).0
1

maxρ ρ∥ = −ε ε− 

To check that this agrees with the relativemixedness expression note that the ʼstretching factor’mwhere
M m( ) logρ σ∥ = is given by m

q

p

supp( )

supp( )
= ∥ ∥
∥ ∥ε . It follows that the two expressions do indeed agree in this case.

We now consider the case of non-degenerate levels.We beginwith deriving the relativemixedness
expression for amore general case, where the final state is some thermal state but not necessarily of the same
Hamiltonian. Thenwe specialize to the case where it is of the sameHamiltonian, and show that the relative
entropy expression is recovered.

Theorem12.

( )W kT H q H pln(2) ( ) ( ) ,max max= −ε ε

where p G ( )T ρ= is the Gibbs rescaled probability distribution corresponding to the initial state ρ and q G ( )T σ= is
the one corresponding to the final thermal stateσ.

For the proof of this theorem a technical lemma on the smoothmax-entropy is needed.

Lemma13. Let p be amonotonously falling probability function on [0, )∞ and dε be defined through

p x x( ) (1 )d 1
d

0
∫ ε− =

ε

Then:

d 2H p( ).max=ε
ε

Proof. Let dε be defined as above.We need to show two things:
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(i) p∃ ε probability function on [0, )∞ with p dsupp( )∥ ∥ =ε
ε and trace-distance p p( , )δ ε<ε .

(ii) p dsupp( )∥ ∥ ⩾ε
ε p∀ ε monotonously decreasing probability functions on [0, )∞ with p p( , )δ ε<ε .

Thenwe get that ( )H p p d( ) log min ( supp( ) ) log ( )p pmax 2 ( , ) 2= ∥ ∥ =ε
δ ε

ε
ε<ε , as said in the lemma. The proof

of (i) goes as follows: define p x p x p x( ) ( ) ( )
d

0

1⎛
⎝⎜

⎞
⎠⎟∫=ε
−

ε
for x d⩽ ε and p x( ) 0=ε for x d> ε. This pε is

therefore normalized to one, has support d[0, ]ε and the following equation shows that it is also ε-near to p:
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which concludes the proof of (i). (ii) Is proven on the next page (for typographical reasons).
For the proof of (ii) assume, that: p∃ ε like above, s.t. p dsupp( )∥ ∥ ⩽ε

ε, then:
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□

Nowwehave all we need to prove the theorem above:

Proof. let pε be a probability functionwith the smallest possible support such that p p( , )δ ε⩽ε and define dε as
in lemma 13. For l d⩽ ε the requirement formaximal work extraction reads (using the lemma)
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□
The above is an equation in the case l d= ε.Which shows that themaximalw as defined in theorem1 is given

by
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Equation (2) is a special case of the above theorem, recoveredwhen the final state is aGibbs state and has also the
same energy eigenvalues as the initial.

Corollary. Let ρ be a diagonal state with energy eigenvalues Ei and Tσ be theGibbs state with the same energy
eigenvaluesEi at the bath temperatureT. Then themaximal extractable work at risk ε is given by:

( )W kT Dln(2) , .T
0 ρ σ=ε ε

Proof. Let p be theGibbs-rescaled probability function corresponding to ρ and P j( ) the eigenvalues of ρ. Let a be

theflat energy probability function corresponding to Tσ . Let
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, where E j( ) are the energy-

eigenvalues of ρ and Tσ andZ is the corresponding partition function. Thismeans by definition, that
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and likewise a x Z( ) 1= (both defined for x Z[0, ]∈ ).
From the above theoremwe get:
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Appendix F. Triangle inequality

The logarithmic relativemixedness respects a triangle inequality:

Lemma14 (Triangle inequality). Let ρ,σ be states and [0, 1)1,2ε ∈
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Therefore there is a m m m1 2⩾ such that

p x
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It follows:
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AppendixG. Relativemixedness as entanglementmeasure

Wewant to start with anyfinite dimensional bipartite pure state ABρ tensor a pure entangled state of dimension
Mi and end up in anyfinite dimensional bipartite pure state σ tensor a pure entangled state of dimensionMf

under LOCC. For M 2i mi= and M 2f m f= , these additional states can be thought of consisting ofmi (mf) Bell
states. The question is now, howmany initial and final Bell states one needs to do such an operation.

Since the states arefinite dimensional we canwrite them in the Schmidt decomposition (see e.g. Nielsen and
Chuang 2000):
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ByNielsen (1999) the sufficient and necessary condition for this action being possible is:
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i.e. the operation is possible iff M q p( )M
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i
⩽ ∣∣ .

Thus the number of Bell states needed to do such an operation is given by M q plog ( ) log ( ( ))M

M2 2

f

i
⩽ ∣∣ .

It is not hard to show that the relativemixedness of entanglement is an entanglementmonotone. This
entanglementmeasurewill be investigated inmore detail elsewhere.
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