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Simple heuristic for the viscosity of polydisperse hard spheres
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We build on the work of Mooney [Colloids Sci. 6, 162 (1951)] to obtain an heuristic analytic ap-
proximation to the viscosity of a suspension any size distribution of hard spheres in a Newtonian
solvent. The result agrees reasonably well with rheological data on monodispserse and bidisperse
hard spheres, and also provides an approximation to the random close packing fraction of polydis-
perse spheres. The implied packing fraction is less accurate than that obtained by Farr and Groot [J.
Chem. Phys. 131(24), 244104 (2009)], but has the advantage of being quick and simple to evaluate.
© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4902439]

I. INTRODUCTION

The rheology of hard spheres in a Newtonian solvent of
viscosity η0 is both a useful test case for rheological models
and of practical importance as a first approximation to the be-
haviour of real suspensions. In 1906, Einstein1 obtained the
result that in the limit of low volume fractions φ, the ratio of
the viscosity η of the suspension to that of the solvent (known
as the ‘relative viscosity’) is given by

ηr ≡ η/η0 = 1 + [η]φ + O(φ2), (1)

where [η] = 2.5 is the “specific viscosity,” and the expression
is independent of the spheres’ sizes, or indeed polydispersity
if the sizes are not all equal. Much work has subsequently
been done to extend this result to higher volume fractions and
polydisperse systems, but Einstein’s equation remains one of
perhaps two results in the field which are both exact and
uncontroversial.

As volume fraction increases, interactions between parti-
cles become important and terms of order φ2 must be taken
into account in Eq. (1). Let us assume hard sphere poten-
tials, so forces such as electrostatics, van der Waals, and
soft stearic interactions are explicitly ruled out.2 Nevertheless,
both hydrodynamic interactions and Brownian forces, and the
changes these induce in the spatial arrangements of the parti-
cles must, in general, be considered. For colloidal sized parti-
cles, where Brownian forces are important, the key distinction
is between low shear rates, where diffusion can distribute the
particles (in some sense) randomly, or induce crystallization,3

and high shear rates, where hydrodynamic forces can lead
to string phases or hydrodynamic clustering.4, 5 For macro-
scopic (neutrally buoyant) particles, the spatial arrangement
will be history dependent, as any previous shear-induced or-
der will persist. This makes the precise definition of the sys-
tem of interest somewhat complex. Our primary concern is
with colloidal particles in the limit of low shear rate, where
we also assume that any equilibrium crystalline order has not
yet emerged. We would also hope to be able to fit the be-
haviour of macroscopic spheres, provided they were initially
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randomly distributed, and the experiment did not produce hy-
drodynamic ordering; for example, if small amplitude oscil-
latory rheometry were used. The experimental data we use
for comparison are the low shear rate limit of colloidal sized
spheres, except for Figure 8, where we accept the less clearly
defined case of larger spheres averaged over a range of shear
rates, in order to compare our predictions to a theory from the
literature due to Qi and Tanner,6 in a manner most favourable
for the latter.

The first theory for monodisperse hard sphere viscosity
at higher volume fraction was proposed by Arrhenius,7 who
argued that each subsequent addition of volume fraction δφ

would contribute an amount δη = η[η]δφ to the suspension
viscosity, for a final relative viscosity of

ηA = exp([η]φ). (2)

An alternative approach can be based on the Bruggeman
differential effective medium argument.8, 9 Here one imag-
ines starting with a volume W of solvent, then adding a
small volume δV of spheres, to achieve a relative viscosity
of ηr (δV ) = 1 + [η]δV/W . The next portion δV of spheres
then sees an effective solvent of viscosity ηr (δV ), and volume
W + δV . This leads to an equation for the relative viscosity
as a function of the volume V of spheres added so far:

ηr (V + δV ) = ηr (V )

{
1 + [η]δV

(W + V )

}

so that, taking logarithms, one finds

d ln ηr

dV
= [η]

W + V
.

If the total volume of spheres added is Vtot then φ = Vtot/

(W + Vtot) and the relative viscosity is finally

ηB = (1 − φ)−[η]. (3)

Bruggeman’s equation (3) is interesting as it predicts a
divergence in viscosity, in this case at φ = 1. Studies in the
1950s however identified a reasonably well-defined (although
still controversial10) concept of random close packing,11 at
a volume fraction around 0.63 or 0.64. One would therefore
expect that both the low strain oscillatory viscosity and the
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low shear rate steady-state viscosity to diverge at this point
(provided the spheres are in the metastable state where they
have not crystallized3). This is because in these two cases,
the shear will not have significantly perturbed the statistical
arrangement of the spheres.

A very widely used approximation, which incorporates
the idea of random close packing (or more generally, a
maximum packing fraction), was provided by Krieger and
Dougherty.12 This can be seen as a modification of Arrhe-
nius’ argument, to take into account crowding effects:13 sup-
pose that the addition of a portion δφ of the volume fraction
leads to an extra increase in viscosity, over the Arrhenius re-
sult, namely, δη = [η]ηδφ + kφδη, then one obtains for the
relative viscosity:

ηKD = [1 − (φ/φc)]−[η]φ
c , (4)

where (in the low shear rate limit) φc = 1/k is the random
close packing fraction of hard spheres.

Over time, various modifications have been made to the
Krieger-Dougherty result, to agree better with rheological
studies. As an example, we mention a recent expression due
to Mendoza and Santamaria-Holek14

ηMS = (1 − φeff)
−[η], (5)

where φeff = φ/(1 − cφ) and c = (1 − φc)/φc.
An alternative effective medium approach, which treats

all the added portions of spheres on an equal footing, was first
suggested by Mooney.15 Suppose we split the volume Vtot of
spheres up into equal, differential portions δV (the number of
such portions thus being Vtot/δV ). Next, suppose that each
fraction contributes a multiplicative factor to the viscosity,
1 + [η]δV/(W − kVtot), which implies that the other fractions
present exclude it from some part of the volume occupied by
the solvent. The resulting relative viscosity is then

ηM =
[

1 + [η]δV

(W − kVtot)

]Vtot/δV

= exp

{
[η]φ

1 − (φ/φc)

}
, (6)

where φc = 1/(k + 1). A comparison of these theories against
experimental data is shown in Figure 1.

The pursuit of expressions to capture polydispersity has
attracted a similarly vigorous literature to the monodisperse
case. The only exact result in this field however, is the obser-
vation by Farris16 that if a suspension consists of a number
of monodisperse fractions, which all have very different radii,
then a given sphere sees an effective solvent consisting of the
actual solvent, plus all the (much) smaller spheres. The over-
all suspension viscosity can therefore be found by multiply-
ing factors for monodisperse spheres in an effective medium,
in order, up to the largest size class. This result will be recov-
ered analytically for the model in this paper, in Sec. III E.

When looking at distributions of particles containing
size classes of very different radii, another issue immedi-
ately arises: if some particles are small enough for Brown-
ian motion to be important, they can cause depletion forces17

between the larger particles, and ultimately induce a phase
separation.18 In this paper, we assume that such a phase sepa-
ration has not occurred; either because the size distribution
is not conducive, or because the measurement of viscosity
is performed before it has happened. This issue will not be
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FIG. 1. Comparison of the rheological models described in Sec. I to rheo-
logical data from Segrè et al.,22 Cheng et al.,23 and de Kruif et al.21 The
data from Segrè et al. use PMMA spheres in cis-decalin; Cheng et al. use
PMMA and SiO2 spheres of the stated size, in decalin (D20), decalin-tetralin
(DT20), and ethylene glucol-glycerol (EGGly) as solvents. The data from de
Kruif et al. use 78 nm silica spheres in cyclohexane. Further details of ex-
perimental data are in Table I. The rheological models use a random close
packing volume fraction for monodisperse spheres of φrcp = 0.6435.19

present for macroscopic spheres, but then the preparation his-
tory could lead to poor reproducibility of measurements in
this case.

More generally, predicting the viscosity of a polydisperse
system is a much greater challenge than for the monodisperse
case. In the former, we are seeking to approximate a func-
tional; that is to say a function of an infinite number of ar-
guments, corresponding to the volume fractions of all size
classes in a potentially continuous distribution; whereas the
latter is a function of only one variable (the volume fraction
φ). Any estimate for the polydisperse case at low shear rate
must also implicitly solve the problem of predicting the ran-
dom close packed volume fraction of polydisperse spheres;
an issue for which good approximants have only recently
emerged.19, 20

Progress has nevertheless been made in this area. For
example, Farris16 introduced an empirical “crowding factor”
f, and more recently, Dörr et al.24 have adopted a matched
asymptotic expansion for ηr(φ) and an effective medium ap-
proach to tackle cases of mixed sphere sizes where the classes
have large, but not infinite, size ratios. An interesting empiri-
cal approach was in fact raised by Mooney in his work on the
monodisperse case,15 where he suggested that “k” could be
taken as a function of the ratios of sphere radii, and sketched
the form that this function would then require. Due to the
symmetric nature of his expression under swapping sphere
classes, predictions by this route would be independent of the
order in which size classes were included. However, the rather
poor performance of the Mooney equation (Figure 1) has ap-
parently discouraged further work on this idea.

The present analysis implements an heuristic modifica-
tion of Mooney’s approach, choosing a plausible (but arbi-
trary) form for the k function, but goes beyond Mooney’s
suggestion by also introducing a second level of particle-
to-particle variability, potentially representing different local
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environments that spheres of even the same size may en-
counter. This extra variability allows for a much better match
to experimental data and a simple scheme for predicting the
viscosity arising from any size distribution, but at the cost of
introducing two free parameters.

II. CONSTRUCTING A FUNCTIONAL

A. Requirements

Suppose we seek a functional which maps sphere size
distribution (and overall volume fraction) to a predicted vis-
cosity. What are the constraints such a functional must sat-
isfy? We suggest the following:

� At low volume fractions, Einstein’s equation [Eq. (1)]
should be recovered.

� The relative viscosity ηr for monodisperse spheres
should diverge at the random close packed volume
fraction φrcp = 0.64 ± 0.005, provided we are inter-
ested in the low shear rate limit of colloidal particles,
or small strain oscillatory behaviour.

� If one size fraction in the size distribution is divided
into several parts added separately, this should not af-
fect the prediction for the viscosity.

� For a bidisperse mixture with a very large size ra-
tio, the small spheres should behave as an effective
medium for the large spheres, increasing both the vol-
ume and viscosity of this effective solvent.

� For such a bidisperse mixture, the viscosity of the
small sphere dispersion between the large spheres
should, to leading order, be that of the small spheres
in the solvent alone. To next order in the radius ra-
tio, the surfaces of the large spheres should exert a de-
pletion effect on the small spheres, slightly increasing
their effective viscosity (discussed below). This obser-
vation applies only away from the jamming transition
(at which point small spheres may get incorporated
into the jammed network25), and in cases where hydro-
dynamic ordering is not important (the low shear rate
limit of colloidal particles, or small strain oscillatory
flow).

� Analogous “effective medium” results to the previous
two points should apply to mixtures of more than two
fractions when all the sizes are very different.16

� A reasonable approximation for the viscosity as
a function of φ for the monodisperse case should be
recovered.

� The functional should agree with known values for
random close packed volume fractions of different size
distributions, in particular the two-parameter family of
bidisperse spheres, and the one parameter family of
lognormal distributions.

� The predicted random close packing fraction should be
least for the monodisperse case.

� The functional should give plausible answers for all
size distributions, in the sense of predicting neither
unexpected divergences, nor unphysical viscosities be-
low that of the solvent.

B. A symmetric differential effective
medium approach

Can the requirements of Sec. II A be met by a simple ana-
lytic expression? Suppose we split the total volume of spheres
Vtot into small portions δV , each being sufficiently small that
we can consider all the spheres in one portion to have the same
radius. Next, we imagine that the different spheres composing
the portion δV need not all behave identically in the disper-
sion; they may, for example, have different neighbours, and so
contribute differently to the rheological properties. We cap-
ture this dispersity in behaviour by labelling the spheres with
a real parameter q ∈ (0, 1), and suppose that a fraction f(q)dq
have the label q. Because q is an arbitrary label, we are free
to choose f(q) ≡ 1 without loss of generality, but for the mo-
ment, we keep f(q) in the calculation, since future work may
indicate a more natural choice for the label. We have therefore
split our actual population of spheres into a two-dimensional
distribution, parameterised by radius r and the new label q. We
will assume, for calculational convenience, that we are adding
spheres sequentially, in order of size, so that the radius r can
be deduced from the volume V we have already added. That
is to say, there is a function V (r), which specifies the overall
sphere size distribution through

P3D(r) = 1

Vtot

dV (r)

dr
, (7)

where P3D(r)dr is the fraction of the volume of spheres that
have radii between r and r + dr. Therefore, V and r are both
labels implying sphere size.

We now ask: what effective solvent volume does a sphere
with radius r and label q “see”? The first (wrong) guess would
simply be “the actual volume W of solvent that is present.”
However, other spheres may alter this. In particular, if there
are spheres of radius r′ � r, these will behave as an effec-
tive solvent, adding to W . On the other hand, spheres that are
similar in size to r may have a crowding effect, lowering the
effective volume of available solvent. If we consider a frac-
tion of spheres that have radius r′, and label in the range q′

to q′ + δq′, they will constitute a volume δV ′f (q ′)δq ′. Let
us suppose that these spheres reduce the effective solvent vol-
ume available to our original spheres (which have radii r) by
an amount knetδV

′f (q ′)δq ′, where knet is a function of V , V ′,
q, and q′. The net result for the spheres of radius r, is a solvent
volume

Weff(V, q) = W −
∫ Vtot

V ′=0

∫ 1

q ′=0
f (q ′)knet(V, V ′, q, q ′)dV ′dq ′.

(8)
The fraction of spheres with radii between r and r + δr,

and labels between q and q + δq will therefore provide a fac-
tor to the relative viscosity given by (1 + [η]δVf (q)δq/Weff).
By multiplying up all the contributions to the increment of
viscosity from all the sphere fractions, we obtain a final esti-
mate of the suspension relative viscosity, given by

ln ηr =
Vtot∫

V =0

1∫
q=0

f (q)[η]dV dq[
W − ∫ Vtot

V ′=0

∫ 1
q ′=0 f (q ′)knetdV ′dq ′

] . (9)
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Without loss of generality, we now take f(q) = 1, but we also
impose two restrictions on knet: First that that it depends on
the radius ratio R(V, V ′) ≡ r(V )/r(V ′) rather than the radii
individually. This is necessary to ensure that if a suspension
of spheres is magnified (with the solvent viscosity remaining
the same), then the overall viscosity will also be unchanged.
Second, we assume that knet a linear function of (q + q′)/2.
This is not motivated on physical grounds, but allows us to
obtain a simple analytic solution to all the equations.

We also note that the volume fraction is related to W and
Vtot trivially via

φ = Vtot/(W + Vtot),

which means that Eq. (9) simplifies to

ln ηr =
Vtot∫

V =0

1∫
q=0

[η]φ(dV/Vtot)dq[
1 − φ − φ

∫ Vtot
V ′=0〈knet〉(dV ′/Vtot)

] , (10)

where 〈knet〉 ≡ ∫
knetdq′, and is a linear function of q (as well

as depending on R).
What properties should 〈knet〉 have? The maximum value

it can attain over all values of V ′, V , and q, determines the
random close packing volume fraction through

φc =
{

1 + max
V,q

[∫
〈knet(V, V ′, q)〉(dV ′/Vtot)

]}−1

, (11)

since this is the lowest volume fraction at which Eq. (10) di-
verges. Thus, for the monodisperse case, we require φc to be
the random close packing fraction for monodisperse spheres,
φrcp = 0.64 ± 0.005, and furthermore we require that this is
the lowest volume fraction for random close packing out of
all choices of r(V ′), r(V ), and q.

Next, consider the limits of small and large size ratios. If
r(V ′) � r(V ), that is say the fraction of spheres we are inte-
grating over is much smaller than those we are considering,
then these tiny spheres just act to increase the effective vol-
ume of the solvent. Hence 〈knet〉 ≈ −1 in this limit. For the
opposite case when r(V ′) 	 r(V ), the large spheres should,
to leading order, have no effect on the effective volume of sol-
vent, so that 〈knet〉 ≈ 0. To next order, we argue in Figure 2
that 〈knet〉 = O(r(V )/r(V ′)).

r’

r’>>r

r

FIG. 2. How should 〈knet〉 scale in the limit r′ 	 r? We assume that the
large spheres exclude the small spheres from a portion of the solvent which
has a volume proportional to the depletion zone around the large spheres.
If we are considering a small portion of the large spheres, occupying a vol-
ume δV ′, then the depletion volume produced by this fraction will be propor-
tional to (r/r ′)δV ′. This will be 〈knet〉δV ′, so in the limit r/r′ → 0, we expect
〈knet〉 ∝ r/r′.

With these considerations in mind, we choose a simple
(but arbitrary) functional form for the lower and upper bounds
on 〈knet〉 as a function of q. We then reconstruct the full func-
tion using linearity in q:

〈knet(V, V ′, q)〉 = kmin + (kmax − kmin)q,

kmin ≡ K(φ∗),

kmax ≡ K(φrcp), (12)

K(x) ≡ (m/x)R − Rm

[(m − 1)/(1 − φrcp)] + Rm
,

R ≡ r(V )/r(V ′)

where m and φ* are free parameters with which we attempt
to fit all the experimental and simulation data. Note that the
predicted random close packing fractions depend on m only,
while viscosities depend on both m and φ*. The limits are
shown in Figure 3 for the parameters which we find to give
the best fit to the experimental data (two cases are shown,
because the experimental data are not mutually consistent).

C. Analytic solution for the polydisperse case

Suppose that we have a mixture of n monodisperse sphere
classes, where n may be arbitrarily large, and suppose that
sphere class i has radius ri, and occupies a volume fraction φi
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FIG. 3. The range of values of 〈knet〉 from Eq. (12). First plot uses φ* = ∞.
Second plot uses φ* = 2.
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TABLE I. Experimental data points used in Figures 1 and 6 for the low shear rate viscosity of monodisperse, hard spheres of various sizes in different solvents,
as a function of volume fraction φ. The data are extracted from plots in Refs. 22 (first two columns) and 23 (last four columns). The other data shown in
Figures 1 and 6 can be read from tables in the references cited.

301 nm PMMA/decalin 640 nm PMMA/D20 640 nm PMMA/DT20 488 nm SiO2/EGGly

φ log10 η
r
(γ̇ = 0) φ log10 η

r
(γ̇ = 0) φ log10 η

r
(γ̇ = 0) φ log10 η

r
(γ̇ = 0)

0.000 0.000 0.013 0.04 0.041 0.05 0.102 0.13
0.154 0.205 0.070 0.08 0.111 0.13 0.154 0.23
0.254 0.415 0.088 0.11 0.170 0.24 0.201 0.30
0.304 0.560 0.135 0.18 0.235 0.35 0.232 0.39
0.356 0.725 0.180 0.24 0.298 0.53 0.270 0.43
0.405 0.955 0.216 0.32 0.387 0.84 0.308 0.59
0.437 1.160 0.274 0.46 0.426 1.07 0.356 0.73
0.457 1.270 0.312 0.53 0.464 1.29 0.407 0.95
0.470 1.390 0.376 0.70 0.482 1.44 0.437 1.11
0.477 1.470 0.453 1.22 0.458 1.31
0.488 1.575 0.490 1.50 0.488 1.58
0.496 1.665 0.511 1.87
0.499 1.725 0.534 2.26

0.543 2.67
0.554 3.03
0.563 3.47

in the final dispersion. The total occupied volume fraction is
therefore φ = ∑n

i=1 φi , which must be less than 1. We place
no restrictions on the radii ri: they do not need to be ordered,
and they do not need to all be different. In this scenario, the
normalized volume-weighted particle size distribution is

P3D(r) =
n∑

i=1

[(φi/φ)δ(r − ri)]. (13)

We can now directly perform the integrals in Eq. (10) to
obtain

ln ηr =
n∑

i=1

[η](φi/φ)

[Si(φrcp) − Si(φ
∗)]

ln

[
1 − [1 + Si(φ

∗)]φ

1 − [1 + Si(φrcp)]φ

]
,

(14)

Si(x) ≡
n∑

j=1

(φj/φ)[(m/x)(ri/rj ) − (ri/rj )m]

[(m − 1)/(1 − φrcp)] + (ri/rj )m
. (15)

As we will see below, from comparison of the predictions to
known experimental and simulation data, the following values
for m and φ* give reasonable agreement:

m = 2.5, φ∗ = ∞, or φ∗ = 2, (16)

where the choice of φ* arises from inconsistencies in the lit-
erature data on the viscosity of monodisperse spheres (Ref. 21
versus Refs. 22 and 23).

Equations (14)–(16) provide the solution we seek, which
can be used to predict the viscosity of any distribution of hard
sphere sizes.

Furthermore, if we use the size distribution described by
Eq. (13) but add more and more of the dispersed phase, in
order to achieve higher and higher volume fractions φ, then
we will find that there is a maximum volume fraction φc per-
mitted, at which Eq. (14) diverges. This is the random close
packed volume fraction of the polydisperse spheres, and is

predicted from Eq. (13) to be given by

φc = {1 + max
i

[Si(φrcp)]}−1. (17)

III. COMPARISON TO KNOWN RESULTS

A. Random close packing of bidisperse spheres

The results from Eq. (17) can be compared directly to
simulation results for random packing of bidisperse spheres
from Refs. 19 (based on soft sphere packing in the zero pres-
sure limit) and 25 (based on an efficient sequential linear
programming method to generate disordered, strictly jammed
states). Suppose the ratio of sphere sizes is R ≥ 1, and the
fraction of occluded volume in the large spheres is w, then
Eqs. (15) and (17) lead to

S1(x) = (1 − x)

x

[
1 − w + w · (mR−1 − xR−m)

m − 1 + (1 − x)R−m

]
, (18)

S2(x) = (1 − x)

x

[
(1 − w)(mR − xRm)

m − 1 + (1 − x)Rm
+ w

]
, (19)

φc = 1

1 + max[S1(φrcp), S2(φrcp)]
. (20)

The comparison to simulation data is shown in Figure 4,
where we see that m = 2.5 gives a reasonable level of
agreement.

B. Random close packing of lognormal distributions

Another set of simulation data that can be used for
comparison, is the random close packing fraction of lognor-
mal distributions of spheres, in Refs. 19 and 20 (shown in
Table II). The comparison is shown in Figure 5, and here the
best fitting value of m is around 3; although m = 2.5 gives
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FIG. 4. Comparison of predictions for random close packing of bidisperse
spheres to simulation data from Refs. 19 (closed symbols) and 25 (open sym-
bols). The parameter w is the fraction of the occluded volume occupied by
the large spheres. For each of the sphere size ratios R, we plot predictions for
different values of the parameter m: the bold solid line is for m = 2.5, and the
thin dashed lines below and above are for m = 2 and m = 3, respectively.

moderately good agreement, provided the polydispersity is
not too extreme.

C. Viscosity of monodisperse spheres

In this case, Eq. (14) reduces to the form

ηr (φ) =
[

1 + (φ/Q)

1 − (φ/φrcp)

][η]Q

, (21)

where

Q = (m − φrcp)φrcpφ
∗

m(1 − φrcp)(φ∗ − φrcp)
. (22)

TABLE II. Simulation results for random close packing volume fractions
of lognormal distributions of spheres, using a soft particle simulation method
on 6000 spheres (column 3; data from Ref. 19), and results using the hard
sphere particle simulation method of Ref. 28 on 1024 spheres (columns 4-6;
data from Ref. 20).

σ d4, 3/d3, 2 φc (Ref. 19) φc (Ref. 20)

0.000 1.000 0.6430 0.64353 0.64502 0.64406
0.000 1.000 0.6438
0.000 1.000 0.6436
0.050 1.003 0.6434 0.64505 0.64461
0.100 1.010 0.6485 0.64566 0.64637 0.64766
0.150 1.023 0.6514 0.65202 0.65007
0.200 1.041 0.6564 0.65466 0.65565 0.65587
0.250 1.064 0.6624 0.66049 0.66275
0.300 1.095 0.6713 0.66801 0.66902 0.66680
0.350 1.130 0.6786 0.67372 0.67608
0.400 1.174 0.6864 0.68282 0.68317 0.68316
0.426 1.199 0.6952
0.491 1.273 0.7072
0.500 1.284 0.7028 0.70009 0.70181 0.70189
0.521 1.312 0.7118
0.550 1.353 0.7178
0.600 1.433 0.7296
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FIG. 5. Comparison of predictions for random close packing of lognormal
distributions of spheres against simulation data from Refs. 19 (FG) and 20
(KTS). The predictions are shown for three values of the parameter m: the
solid line uses m = 2, the bold solid line uses m = 2.5 and the dashed line
uses m = 3.

Equation (21) depends on the fitting parameters φ* and m,
which have no physical interpretation, as they come from an
arbitrarily chosen functional form. Figure 6 shows the com-
parison to rheological data, from which we see that a value of
φ* = ∞ agrees reasonably well with the data from de Kruif
et al.,21 while φ* = 2 gives a better fit (at least up to volume
fractions of 0.5) for the more recent data from Refs. 22 and
23. Hence we find

Q = 1.3 if φ∗ = ∞, (23)

Q = 2.0 if φ∗ = 2. (24)
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Segre et al. 301nm PMMA/cis-decalin
Cheng et al. 640nm PMMA/D20
Cheng et al. 640nm PMMA/DT20
Cheng et al. 488nm SiO2/EGGly
de Kruif et al. Couette
de Kruif et al. Parallel plate
Prediction with φ* = 2, φ

rcp
 = 0.64 ± 0.05

Prediction with φ* = ∞, φ
rcp

 = 0.64 ± 0.05

FIG. 6. Comparison of the predictions for the viscosity of monodisperse
spheres against experimental data. The experimental results are for zero shear
rate viscosity, and are taken from Refs. 22, 23, and 21 (see Figure 1 and
Table I for a detailed description). The predictions use Eq. (21) with
m = 2.5 and φ* = ∞ (solid lines) and φ* = 2 (dashed lines). The two lines
for each case cover the possible range of values for φrcp, which is not accu-
rately known; namely φrcp = 0.635 and 0.645.
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Out of interest, one can also expand the predicted viscos-
ity to second order in φ to obtain

ηr = 1 + [η]φ +
{

[η]

φrcp

+ [η]2

2
− [η]

2Q

}
φ2 + O(φ3). (25)

which gives a coefficient of φ2 of 6.1 when φ* = ∞, or 6.4
when φ* = 2. This is consistent with the range 4.8–7.03 of
reported values from the literature,24 which arise according
to the manner in which hydrodynamics and Brownian forces
are included in the calculations. Specifically, Batchelor and
Green26 showed that the purely hydrodynamic contribution to
the coefficient of φ2 from a thermal distribution of spheres
is 5.2. Later, Batchelor27 showed that Brownian forces in the
same system made an extra contribution of 1, so that the pre-
dicted value for our case of low shear rate Brownian spheres
should be 6.2.

D. Viscosity of bidisperse spheres

A comparison to zero shear rate viscosity data on col-
loidal spheres from Rodriguez et al.,29 using φrcp = 0.64,
m = 2.5, and φ* = ∞ is shown in Figure 7. We see that
reasonable agreement is found, with no further adjusting of
parameters. The experimental data are for a single sphere size
ratio (R = 141/84 ≈ 1.68), and various volume fractions.

We note that for bidisperse spheres with a large size ratio
(and potentially other size distributions), it is quite possible
for a depletion-induced phase separation to occur18 in the low
shear rate regime when particles are small enough for Brow-
nian forces to be important and a low shear rate viscosity is
clearly defined. However, for the relatively modest value of R
in Ref. 29, this may not be a concern.30

Finally, we show some experimental data for larger, non-
colloidal spheres in Figure 8. The experimental viscosity data

0 0.25 0.5 0.75 1
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10
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η r

FIG. 7. Comparison of the predictions for the relative viscosity ηr of bidis-
perse spheres against experimental data (as a function of the proportion w of
the volume of spheres that are in the large size class). The experimental re-
sults are for zero shear rate viscosity, and are taken from Ref. 29, which uses
latex spheres of diameter 84 nm and 141 nm in bromoform. The total vol-
ume fraction of the spheres is (bottom to top) φ = 0.473 (◦), φ = 0.517 (�),
φ = 0.562 (�), φ = 0.582 (•), φ = 0.634 (�). The predictions use Eq. (14)
with φrcp = 0.64, m = 2.5, and φ* = ∞.
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FIG. 8. Comparison of the predictions for the relative viscosity ηr of bidis-
perse spheres against experimental data and the model from Ref. 6 at a fixed
volume fraction of 0.67 and R = 2.5 and 7.5. The proportion of the vol-
ume of spheres that are in the large size class is w. The experimental re-
sults in this case are viscosities averaged over a range of shear rates, and are
taken from Ref. 31, which uses polystyrene and PMMA spheres of diam-
eters 40 ± 10 μm, 100 ± 20 μm, and 300 ± 25 μm. The predictions from
this work use Eq. (14) with φrcp = 0.64, m = 2.5, and φ* = ∞.

taken from Chang and Powell,31 have been averaged over a
range of shear rates. This is therefore a sub-optimal data set,
due to the possibility of hydrodynamic ordering, which would
make the choice of the static random close packed volume
fraction for the divergence of viscosity suspect. Nevertheless,
we choose this data set to compare to our predictions, because
another rheological model (due to Qi and Tanner6) uses this
data set to choose their fitting parameters and functions. We
see that reasonable agreement is obtained with no further ad-
justment of parameters.

E. The limit of large sphere size ratios

Suppose that we have a set of n sphere size fractions, oc-
cupying volume fractions φ1, φ2, . . . φn. Furthermore, assume
(which has not been necessary so far) that they are all very
different in radius, and are ordered such that

r1 � r2 � . . . � rn. (26)

It follows immediately from Eq. (15) that

Si(x) = (1 − φrcp)[(m/x) − 1](φi/φ)

(m − φrcp)
−

i−1∑
j=1

(
φj

φ

)
. (27)

The relative viscosity of the system can be calculated from
Eq. (14), and after some manipulation one finds

ln ηr =
n∑

i=1

Hr (�i), (28)

Hr (�i) = [η]Q ln

[
1 + (�i/Q)

1 − (�i/φrcp)

]
, (29)

�i ≡ φi

1 − ∑n
j=i+1 φj

, (30)
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while the random close packing fraction from Eq. (17) is

φc =
⎧⎨
⎩max

i

⎡
⎣ (φi/φ)

φrcp

+
n∑

j=i+1

(
φj

φ

)⎤
⎦

⎫⎬
⎭

−1

. (31)

Here Hr(φ) the monodisperse relative viscosity, defined in
Eq. (21). This is the exact result obtained by Farris in
Ref. 16, where spheres of one size fraction move in an ef-
fective medium defined by the solvent plus all the smaller
spheres.

IV. CONCLUSIONS

The core result of this paper is contained in Eqs. (14)–
(17), which together provide a simple and computationally
cheap method to estimate the viscosity and random close
packed volume fraction of any size distribution of hard
spheres in a Newtonian solvent.

The resulting model yields moderately good agreement
with known experimental and simulation data (some compro-
mises are necessary in choosing numerical values for the two
free parameters), gives physically plausible answers even for
unusual size distributions, and reproduces known exact lim-
its for the cases where sphere sizes are very different to one
another.

Although the results for random close packing are no-
tably less accurate than those obtained from the recent one
dimensional rod-packing model of Farr and Groot,19, 20 we be-
lieve that the crowding and effective medium approach used
in this paper has the potential to describe a broader class of
rheological behaviour, including cases where the interaction
between particles is not simply a hard sphere potential plus
hydrodynamics. We hope to develop these possibilities in fu-
ture work.
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