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Abstract

Bootstrap percolation is a type of cellular automaton which has been used to model
various physical phenomena, such as ferromagnetism. For each natural number r,
the r-neighbour bootstrap process is an update rule for vertices of a graph in one of
two states: ‘infected’ or ‘healthy’. In consecutive rounds, each healthy vertex with
at least r infected neighbours becomes itself infected. Percolation is said to occur if
every vertex is eventually infected.

Usually, the starting set of infected vertices is chosen at random, with all vertices
initially infected independently with probability p. In that case, given a graph G

and infection threshold r, a quantity of interest is the critical probability, pc(G, r), at
which percolation becomes likely to occur. In this paper, we look at infinite trees and,
answering a problem posed by Balogh, Peres and Pete, we show that for any b ≥ r

and for any ε > 0 there exists a tree T with branching number br(T ) = b and critical
probability pc(T, r) < ε. However, this is false if we limit ourselves to the well-studied
family of Galton–Watson trees. We show that for every r ≥ 2 there exists a constant
cr > 0 such that if T is a Galton–Watson tree with branching number br(T ) = b ≥ r

then
pc(T, r) >

cr
b
e−

b
r−1 .

We also show that this bound is sharp up to a factor ofO(b) by giving an explicit family

of Galton–Watson trees with critical probability bounded from above by Cre
− b
r−1 for

some constant Cr > 0.
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Bootstrap percolation on Galton–Watson trees

1 Introduction and results

Bootstrap percolation, introduced by Chalupa, Leath and Reich [7] in 1979, is one
of the simplest examples of cellular automata. Given a graph G and a natural number
r ≥ 2, the r-neighbour bootstrap process can be defined as follows. For any subset of
vertices A ⊂ V (G), set A0 = A, for each t ≥ 1 let

At = At−1 ∪ {v ∈ V (G) : |N(v) ∩At−1| ≥ r},

where N(v) is the neighbourhood of v in G. The closure of a set A is 〈A〉 =
⋃∞
t=0At.

Often, this process is thought of as the spread of an ‘infection’ through the vertices of
G in discrete time steps, with the vertices in one of two possible states: ‘infected’ or
‘healthy’. For each t, At is the set of infected vertices at time t and 〈A〉 is the set of
vertices eventually infected when A is the set of initially infected vertices. Given a set
A of initially infected vertices, percolation or complete occupation is said to occur if
〈A〉 = V (G).

Bootstrap percolation may be thought of as a monotone version of the Glauber dy-
namics of the Ising model of ferromagnetism. To mimic the behaviour of ferromagnetic
materials, in the classical setup, all vertices of G are assumed to belong to the set A
of initially infected vertices independently with probability p. It is clear that the prob-
ability of percolation is non-decreasing in p and for a finite or infinite graph G one can
define the critical probability

pc(G, r) = inf{p : Pp(〈A〉 = V (G)) ≥ 1/2}, (1.1)

for which percolation becomes more likely to occur than not. Indeed, much work has
been done in this direction for various underlying graphs and values of the infection
threshold.

The question of critical probability has been studied extensively in the cases of
grid-like and cube-like graphs. For example, Aizenman and Lebowitz [1] showed that
pc([n]2, 2) decreases logarithmically with n. This was later sharpened by Holroyd [11]

who showed that pc([n]2, 2) = π2

18 logn + o(1/ log n). Balogh, Bollobás, Duminil-Copin and

Morris [2] generalized Holroyd’s result giving the asymptotic formula for pc([n]d, r) for
all values of d and r. A sharp result for critical probability in 2-neighbour bootstrap
percolation on the hypercube graph was obtained by Balogh, Bollobás and Morris [3].

Other types of graphs have also been studied. Janson, Łuczak, Turova and Vallier
[13] considered the random graph Gn,p, Balogh and Pittel [5] worked with random reg-
ular graphs, which were further studied by Janson [12]. Chalupa, Leath and Reich [7]
considered infinite regular trees, also called Bethe lattices, which have been subse-
quently examined by Balogh, Peres and Pete [4], by Biskup and Schonmann [6] and by
Fontes and Schonmann [8]. In particular, Balogh, Peres and Pete [4] built upon the
known results concerning bootstrap percolation on regular trees and investigated more
general results on critical probabilities for infinite trees. For an infinite tree T , the
critical probability for r-neighbour bootstrap percolation, denoted pc(T, r), is defined as

pc(T, r) = inf{p | Pp(T percolates in r-neighbour bootstrap percolation) > 0}.

Note that this definition of pc(T, r) is different from that given in (1.1). This modification
is motivated by the fact that for a general infinite tree the exact probability of percola-
tion could be highly affected by a finite number of small, yet difficult to infect from the
outside, subtrees. The existence of such substructures does not matter when we care
only about the probability of percolation being positive.

For every d ≥ 1, let Td denote the infinite (d+1)-regular tree. Balogh, Peres and Pete
[4], expanding the work of Chalupa, Leath and Reich [7], gave a formula for pc(Td, r)
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Bootstrap percolation on Galton–Watson trees

showing, in particular, that for any d ≥ 1 and r ≥ 2 we have pc(Td, r) > 0. They also
showed that every infinite tree T with branching number br(T ) < r has the property
that pc(T, r) = 1. (The branching number is defined in Section 2.) In general, for any
r and b, there are infinite trees T with branching number b and pc(T, r) = 1. Given
these results, the question was raised of finding the smallest critical probability among
all trees with a fixed branching number. With a simple example of a Galton–Watson
tree it was shown in [4] that for b ≥ r a (b + 1)-regular tree does not, in general,
minimize the critical probability for r-neighbour bootstrap percolation among all trees
with branching number b. Defining a function fr, for each r ≥ 2, by

fr(b) = inf{pc(T, r) | br(T ) ≤ b and T has bounded degree},

Balogh, Peres and Pete [4] posed the following two problems:

1. Is fr(b) strictly positive for all real b ≥ 1?

2. Is fr(b) continuous apart from b = r?

In this paper we answer both of these questions by showing that fr(b) is a step-function.
More precisely, in Section 2, we prove the following theorem.

Theorem 1.1. For all r ≥ 2 and b ≥ r, fr(b) = 0.

Combining Theorem 1.1 with the result of Balogh, Peres and Pete [4], we have

fr(b) =

{
1, if b < r,

0, otherwise.

We shall prove Theorem 1.1 by producing trees with arbitrarily small critical prob-
abilities. Motivated by the non-homogeneous nature of these trees we also study a
well–known family of well-behaved trees: Galton–Watson trees. For a non-negative
integer–valued distribution ξ, let Tξ be the Galton–Watson tree with offspring distribu-
tion ξ (a more formal definition is given in Section 3). We shall see in Section 3 that
pc(Tξ, r) is almost surely a constant (depending on the distribution ξ but not on the re-
alization Tξ); we let pc(Tξ, r) denote also this constant, without risk of confusion. We
define a new function fGWr (b) by

fGWr (b) = inf{pc(Tξ, r) | E(ξ) = b,P(ξ = 0) = 0}. (1.2)

The condition that P(ξ = 0) = 0 is included since any finite tree percolates with posi-
tive probability if the probability of initial infection, p, is positive. For this reason, we
consider only offspring distributions for which the resulting tree is almost surely infi-
nite. While the branching numbers of infinite trees can be difficult to determine, for
Galton–Watson trees, Lyons [14] showed that, almost surely, br(Tξ) = E(ξ).

In Section 3, we shall investigate the function fGWr (b) and we shall show it to be
positive for all b and r. That is, the value of E(ξ) immediately leads to a non-trivial
lower bound on pc(Tξ, r). We shall also show that our bound is tight up to a factor of
O(b).

Theorem 1.2. Let the function fGWr (b) be defined as in (1.2).

1. If r > b ≥ 1 then fGWr (b) = 1.

2. For r ≥ 2 there are constants cr and Cr such that if b ≥ r then

cr
b
e−

b
r−1 ≤ fGWr (b) ≤ Cre−

b
r−1 .
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Note that the b-ary tree is a Galton–Watson tree given by ξ with P(ξ = b) = 1. The
b-ary tree has the same critical probability as the (b+ 1)-regular tree Tb. In Lemma 3.7,
it is shown that for each r, there is a constant cr > 0 so that the critical probability
for the regular tree is given asymptotically by pc(Tb, r) = crb

− r
r−1 (1 + o(1)). By Theorem

1.2, for large b, the value of fGWr (b) is extremely far from pc(Tb, r). This discrepancy sug-
gests that offspring distributions highly concentrated around their means might yield
much higher values for the critical probability. In Section 3.4 this is seen in some ex-
amples of natural classes of Galton–Watson trees for which the critical probability for
bootstrap percolation can be computed exactly. One class of examples considered are
those offspring distributions supported on two values: 2 and a, with mean b. Among
these distributions, those with the smallest variance have critical probability closest to
pc(Tb, 2) = 1+o(1)

2b2 .

In general, one might expect that good control over the moments of an offspring
distribution would lead to tighter bounds on the critical probability. This is in fact true
as shown by the following theorem, proved in Section 3.3.1.

Theorem 1.3. For each r ≥ 2 and α ∈ (0, 1] there exists a constant cr,α > 0 such that
for any offspring distribution ξ we have

pc(Tξ, r) ≥ cr,α
(
E(ξ1+α)

)−1/α
.

Also, for each r ≥ 2 there exists a constant Ar > 0 such that

pc(Tξ, r) ≤ E
(

Ar
ξr/(r−1)

)
.

The lower bound in Theorem 1.3 is proved directly for α ∈ (0, 1). For r ≥ 3 the
constants cr,α obtained in the theorem converge to cr > 0 as α → 1 and hence by
continuity, the theorem holds for r ≥ 3 and α = 1. For r = 2 and α = 1 the theorem
holds by the final result in this paper, given in Section 3.3.2. There, we prove the
following theorem which, apart from a sharp lower bound on pc(Tξ, 2) based on the
second moment of ξ, also gives additional lower bounds on the critical probability in
2-neighbour bootstrap percolation, as well as a sharp upper bound on pc(Tξ, 2) based on
the second negative moment of ξ.

Theorem 1.4. Let Tξ be the Galton–Watson tree of an offspring distribution ξ. Then

pc(Tξ, 2) ≥ max

{
1− 1

2P(ξ = 2)
,max
k≥3

{
1− (k − 1)2k−3

kk−1(k − 2)k−2P(ξ = k)

}}
, (1.3)

and

pc(Tξ, 2) ≤ E
(

1

(ξ − 1)(2ξ − 3)

)
≤ E

(
4

ξ2

)
. (1.4)

Additionally, if ξ has the property that E(ξ2) <∞, then

pc(Tξ, 2) ≥ 1

2E(ξ(ξ − 1))− 3
≥ 1

2E(ξ2)
. (1.5)

Balogh, Peres and Pete [4] noted that as b → ∞, the critical probability for the
regular tree, Tb, is pc(Tb, 2) ∼ 1

2b2 , which matches the bounds given in Theorem 1.4.

To conclude, in Section 4, we state a few questions and conjectures.
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2 Trees with arbitrarily small critical probability

In this section, a construction is given for families of infinite trees with a fixed
branching number and arbitrarily small critical probability.

The branching number is one of the most important invariants of infinite trees which
we shall now define formally. (For further information, see, for example, Lyons [14].)
Given a rooted tree T , for every edge e in the tree, let |e| denote the number of edges
(including e) in the path from e to the root. The branching number of a tree T , denoted
br(T ), is the supremum of real numbers λ ≥ 1 such that there exists a positive flow
in T from the root to infinity with capacities at every edge e bounded by λ−|e|. It is
easily seen that this value does not depend on the choice of the root. Though in this
paper, only infinite trees are considered, let us mention that for a finite tree T we have
br(T ) = 0.

For b ≥ 2, let Tb denote the infinite (b + 1)-regular tree. As usual, for n ≥ 1 and
p ∈ [0, 1], write Bin(n, p) for a binomial random variable with parameters n and p. In
[7], it was shown that, in r-neighbour bootstrap percolation, for each b ≥ r, the critical
probability pc(Tb, r) is equal to the supremum of all p for which the fixed-point equation

x = P(Bin(b, (1− x)(1− p)) ≤ b− r) (2.1)

has a solution x ∈ [0, 1). Note that x = 1 is always a solution to equation (2.1).
An interpretation of equation (2.1) is as follows. The complete occupation of Tb obeys

the 0 − 1 law and can be shown to be stochastically equivalent to complete occupation
of a rooted b-ary tree, that is, a rooted infinite tree in which every vertex has exactly
b descendants (so all vertices have degree b + 1 except the root which has degree b).
For b ≥ r the root of a b-ary tree, conditioned on being initially healthy, remains healthy
forever iff at least b−r+1 of its children are initially healthy and remain healthy forever.
Let x be the probability that, conditioned on being initially healthy, the root does not
remain healthy forever. Then, one can show that x is the smallest solution to equation

(2.1) in [0, 1]. In particular, it was noted in [7] that pc(Tb, 2) = 1 − (b−1)2b−3

bb−1(b−2)b−2 and later

in [4] that pc(Tb, b) = 1− 1
b . It can be shown that for every fixed r, as b tends to infinity,

pc(Tb, r) =
(
1− 1

r

) ( (r−1)!
br

)1/(r−1)

(1 + o(1)). This calculation is given in Lemma 3.7, to
come.

From equation (2.1) we see immediately that pc(Tb, r) > 0 for any b ≥ r ≥ 2. In [4]
the authors asked whether there exists εb,r > 0 such that for any tree T with branching
number br(T ) = b we have pc(T, r) ≥ εb,r, answering this question affirmatively for r > b

with εb,r = 1.
With an explicit construction of a family of infinite trees with bounded degree we

shall now show that fr(b) = 0 for b ≥ r. The condition that the tree T has bounded
degree is included in the definition of the function fr(b) since one can easily construct
infinite trees with unbounded degree and branching number b, and such that their
critical probability is 0. We show an example of such construction at the end of this
section.

Given r ≥ 2, b ≥ r and p ∈ (0, 1), we shall show that there is an integer d and an
infinite tree with branching number b where every vertex has either degree d + 1, d +

2, b+1 or b+2 and such that, infecting vertices with probability p, the tree almost surely
percolates. The rough idea of the proof is that, when d is sufficiently large, vertices that
are the roots of some finite number of levels of a copy of Td are very likely to eventually
become infected and these finite trees can be arranged within an infinite tree to cause
the percolation of the entire tree.

First, it is shown that, for the infection threshold r and for d large enough, we can
in fact obtain an arbitrarily small critical probability pc(Td, r).
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Lemma 2.1. For each integer r ≥ 2 and d ≥ r, pc(Td, r) ≤ r/d.

Proof. Fix r ≥ 2, d ≥ r and p ≥ r/d. To prove this result, it suffices to show that for all
x ∈ [0, 1) we have

P(Bin(d, (1− x)(1− p)) ≤ d− r) > x,

or alternatively,
P(Bin(d, (1− x)(1− p)) ≥ d− r + 1) < 1− x.

In this case there are no solutions of the fixed point equation (2.1) in [0, 1) and so
pc(Td, r) ≤ p.

Recall the following Chernoff-type inequality: if X ∼ Bin(n, p) and m ≥ np, then
P(X ≥ m) ≤ e−np(enp/m)m. Since dp ≥ r,

P(Bin(d, (1− x)(1− p)) ≥ d− r + 1)

≤ ed−r+1−d(1−x)(1−p)
(
d(1− x)(1− p)

d− r + 1

)d−r+1

= ed−r+1−d(1−x)(1−p)
(
d(1− p)
d− r + 1

)d−r+1

(1− x)d−r(1− x)

≤ ed−r+1−d(1−x)(1−p)
(

1− dp− r + 1

d− r + 1

)d−r+1

e−x(d−r)(1− x)

≤ exp [d− r + 1− d(1− x)(1− p)− (dp− r + 1)− x(d− r)] (1− x)

= exp(−x(dp− r))(1− x)

< 1− x,

for all x ∈ [0, 1). Thus, there are no solutions of equation (2.1) in [0, 1) and hence
pc(Td, r) ≤ p.

As a consequence of Lemma 2.1, for r fixed, limd→∞ pc(Td, r) = 0.
In the next lemma we show that, for any ε ∈ (0, 1), there is a large number nε such

that if we initially infect vertices in the first nε levels of Td with probability p > pc(Td, r),
then the root of Td will become infected in the r-neighbour bootstrap process with
probability at least 1− ε. For any d ≥ 1, n ≥ 0, let Tnd be the first n+ 1 levels of a rooted,
(d+ 1)-regular tree. That is, the root has d+ 1 children, there are (d+ 1)dn−1 leaves and
every vertex except the root and the leaves has exactly d children.

Lemma 2.2. For d ≥ r ≥ 2, p > pc(Td, r), and n ≥ 1, let the vertices of Tnd be infected
independently with probability p > 0. For the r-neighbour bootstrap process,

Pp(the root of Tnd is eventually infected)→ 1

as n→∞.

Proof. It was noted by Balogh, Peres and Pete [4] that bootstrap percolation on regular
trees follows a 0−1 law. Thus, if p > pc(Td, r) then for r-neighbour bootstrap percolation
on Td, Pp(Td percolates) = 1 and hence

Pp(root is eventually infected) = Pp(∪t≥0{root is infected by time t}) = 1.

Using induction, one can show that the root is infected by time t exactly when the
eventual infection of the root depends on the infection status of vertices in the first t
levels. Indeed, if the root is infected at time 0, this event depends only on the initial
infection of the root itself. For t ≥ 1, if the root becomes infected at time t, then at
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least r of its children are infected at time t− 1. By induction this event depends only on
vertices at distance at most t− 1 from the children of the root and hence at distance at
most t from the root itself.

Therefore, lim
t→∞

Pp(root infected based on first t levels) = 1.

We are now ready to prove Theorem 1.1 with the construction given in the proof of
Theorem 2.3 below.

Theorem 2.3. For every pair of integers r ≥ 2 and b ≥ r and every p ∈ (0, 1), there is
an infinite tree T with bounded degree and br(T ) = b satisfying pc(T, r) < p.

Proof. Fix p ∈ (0, 1) and integers r, b with b ≥ r. Let d > max{r/p, b} so that, by
Lemma 2.1, p > r/d ≥ pc(Td, r). Let {ni}i and {mi}i be sequences of integers, all to
be defined precisely later in the proof. Our tree is constructed level-by-level, depending
on these parameters; it will be shown that the sequences {ni}i and {mi}i can be chosen
appropriately so that the resulting tree has the desired properties.

Begin with a copy of Tn1

d . To each leaf of this compound tree attach a copy of Tm1

b .
Then to each leaf of the resulting tree attach a copy of Tn2

d and then to each new leaf
attach a copy of Tm2

b . Continue in this manner, alternating with (d+1)-regular trees and
(b+ 1)-regular trees of depths given by the sequences {ni}i and {mi}i respectively and
let T be the resulting infinite tree. We would like to show that there is a suitable choice
for the sequences {ni} and {mi} so that br(T ) = b and pc(T, r) < p (in other words,
Pp(T percolates) > 0).

For each ` ≥ 1, let N` =
∏`−1
i=1(d + 1)dni−1(b + 1)bmi−1 be the number of copies of

Tn`d added in the (2` − 1)-th step of the construction and let v`1, v
`
2, . . . , v

`
N`

be the roots
of those copies of Tn`d and let Tn`d,i denote the copy of Tn`d rooted at v`i . Define t` =∑`−1
i=1(ni +mi) to be the depth of these vertices in T . For each ` ≥ 1 and i ∈ {1, . . . , N`},

consider the event

A`,i = {v`i becomes infected based only on infection of vertices in Tn`d,i}.

Using Lemma 2.2, choose n` to be large enough so that P(A`,i) ≥ (1/2)1/N` . Note that
N` does not depend on n`. Set A` = ∩iA`,i. If A` occurs, then all vertices in level t` are
eventually infected and hence all vertices in levels at most t` are eventually infected.
Further, if infinitely many events {A`}` occur, then T percolates.

For ` fixed, since the events {A`,i}i are independent, by the choice of n` we have

P(A`) = P(∩iA`,i) =

N∏̀
i=1

P(A`,i) ≥
N∏̀
i=1

(
1

2

)1/N`

=
1

2
.

By the Borel-Cantelli lemma, since the events {A`} are independent and∑
`

P(A`) ≥
∑
`

1

2
=∞,

then P(T percolates) = 1.
Up to this point, no conditions have been imposed on the sequence {mi}i and these

can be chosen, in such a way that br(T ) = b. Note that, since d was chosen with d > b,
every vertex of T has at least b children and so br(T ) ≥ b. By a choosing the values of
mi recursively, depending on the sequence {ni}, it is shown below that br(T ) ≤ b.

For every n, let Ln be the n-th level of T , i.e., the vertices at distance n from the
root of T . A standard upper bound on the branching number of an arbitrary tree gives
br(T ) ≤ lim inf |Ln|1/n.
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For ` ≥ 1, consider the level t`+1 =
∑`
i=1(ni +mi) with

∏`
i=1(d+ 1)dni−1(b+ 1)bmi−1

vertices. Clearly, if m` ≥ `2 is large enough then

(
d

b

)∑`
i=1 ni
t`+1

≤ 1 +
1

2`

and `/t`+1 → 0 as `→∞. Then, the number of vertices in level t`+1 satisfies

|Lt`+1
| =

∏̀
i=1

(d+ 1)dni−1(b+ 1)bmi−1

= bt`+1

(
d

b

)∑`
i=1 ni

(
1 +

1

d

)`(
1 +

1

b

)`
≤ bt`+1

(
1 +

1

2`

)t`+1
(

1 +
1

d

)`(
1 +

1

b

)`
.

Thus, lim inf |Ln|1/n ≤ b and so br(T ) = b.

For simplicity, the proof of Theorem 2.3 assumes that b is an integer. For any real
b ≥ r, the construction can be modified to give an infinite tree with branching number
b and arbitrarily small critical probability.

By Theorem 2.3, for b ≥ r, fr(b) = 0, completing the proof of Theorem 1.1.
The construction in the proof of Theorem 2.3 can also be modified to produce exam-

ples of infinite trees with branching number b, unbounded degree and critical probabil-
ity 0. Indeed, set ni ≡ 1, and for each ` ≥ 1, at step 2`− 1 of the construction replace d
by d`, chosen to be large enough so that for the corresponding events A`,i,

P(A`,i) = P(Bin(d` + 1, 1/`) ≥ r) ≥
(

1

2

)1/N`

.

The sequence {mi}i, giving the number of levels of the (b + 1)-regular trees, can be
chosen to ensure br(T ) = b. The resulting infinite tree T has branching number b,
unbounded degree and pc(T, r) = 0.

3 Critical probabilities for Galton–Watson trees

3.1 Definitions

In the previous section, we showed that the branching number br(T ) of an infinite
tree T does not lead to any nontrivial lower bound on the critical probability pc(T, r),
except when br(T ) < r and pc(T, r) = 1, as shown in [4]. The trees constructed in the
proof of Theorem 2.3 to show that if b ≥ r, then fr(b) = 0, are highly non-homogeneous
and the irregularities in their construction seem crucial to their small critical probabil-
ities. In this section we limit our attention to the well–studied family of Galton–Watson
trees, for which these anomalies do not occur. Before proceeding with the proofs of
Theorems 1.1, 1.2, and 1.3, some preliminaries on Galton–Watson trees are given that
are used throughout.

A Galton–Watson tree is the family tree of a Galton–Watson branching process. For
a non-negative integer-valued distribution ξ, called the offspring distribution, we start
with a single root vertex in level 0 and at each generation n = 1, 2, 3, . . . each vertex in
level n − 1 gives birth to a random number of children in level n, where the number of
offspring of each vertex is distributed according to the distribution ξ and independent
of the number of children of any other vertex. This process can be formalized to define
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a probability measure on the space of finite and infinite rooted trees and Tξ is used to
denote a randomly chosen Galton–Watson tree with offspring distribution ξ. As previ-
ously mentioned, if P(ξ = 0) > 0 then Tξ is finite with positive probability. Thus in this
paper we limit our attention to offspring distributions with P(ξ = 0) = 0 for which Tξ is
almost surely infinite.

While the critical probability pc(Tξ, r) is a random variable, which could take a range
of values, depending on the tree Tξ, it can be shown that in the space of Galton–Watson
trees with offspring distribution ξ, conditioned on Tξ being infinite, pc(Tξ, r) is almost
surely a constant. While this involves standard applications of results and techniques in
the theory of branching processes, the details are given in this section for completeness.

For any rooted tree T , with root v0, let {Tw | w ∈ N(v0)} be the collection of rooted
sub-trees of T whose roots are the immediate descendants of v0; that is, Tw is the
connected component of T − v0 containing w and rooted at w. A property A of rooted
trees is called inherited if every finite tree T has this property and, furthermore, if
T has the property A if and only if for every w adjacent to the root, Tw has property
A also. It can be shown that for a Galton–Watson tree, conditioned on the survival of
the process, every inherited property has conditional probability either 0 or 1 (see, for
example, Proposition 5.6 in [15]).

Given p > 0 and r ≥ 2 consider the property

Ap = {Pp(T percolates in the r-neighbour bootstrap process) > 0}.

Clearly, the property Ap is inherited. Since we consider offspring distributions with
P(ξ = 0) = 0, the Galton–Watson process survives almost surely and we see that the
probability that the Galton–Watson tree Tξ has property Ap is either 0 or 1. By the
definition of critical probability this implies that pc(Tξ, r) is almost surely a constant.

Before proving Theorem 1.2, let us recall the following definition from [4].

Definition 3.1. Let G be a graph and r ∈ Z+. A finite or infinite set of vertices,
F ⊂ V (G), is called an r-fort iff every vertex in F has at most r neighbours in V (G) \ F .

While a fort is a subgraph of the graph G, not depending on the infection status
of vertices, if G contains an (r − 1)-fort, F , with all vertices initially healthy, then G

does not percolate in the r-neighbour bootstrap process. Moreover, the set of eternally
healthy vertices is an (r − 1)-fort, so a vertex remains healthy forever if and only if it
belongs to a healthy (r − 1)-fort.

Now we show that we may assume that P(ξ < r) = 0, repeating the argument
observed earlier in [4]. If there is a k < r such that P(ξ = k) > 0, then Tξ almost
surely contains infinitely many pairs of vertices u, v such that v is a child of u and
deg(u) = deg(v) = k + 1. Then, if we initially infect vertices of Tξ independently with
some probability p < 1, almost surely we obtain such a pair with both u and v initially
healthy, in which case {u, v} is an initially healthy (r − 1)-fort. Thus Tξ almost surely
does not percolate and so pc(Tξ, r) = 1.

Therefore assume that P(ξ < r) = 0; in particular, E(ξ) = b ≥ r. In this case, almost
surely, Tξ contains no finite (r − 1)-forts.

In [4], Balogh, Peres and Pete, characterize the critical probability for a particular
Galton–Watson tree in terms of the probability that the root of the tree remains healthy
in the bootstrap process. The details are given here for arbitrary Galton–Watson trees.

For any tree T with root v0, r ≥ 2 and p ≥ 0, initially infecting vertices with proba-
bility p, define

q(T, p) = Pp(v0 is in a healthy (r − 1)-fort),
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the probability that v0 is never infected. Since, in general, the random variable q(Tξ, p)
depends on the tree Tξ, consider its expected value, over the space of random Galton–
Watson trees with offspring distribution ξ and set

q(p) = ETξ(q(Tξ, p)).

In what follows, it is shown that q(p) > 0 iff p < pc(Tξ, r).
For a fixed tree T with root v0, denote the children of the root by v1, v2, . . . , vk and the

corresponding sub-trees by T1, T2, . . . , Tk. The root v0 is contained in an infinite healthy
(r − 1)-fort iff v0 is initially healthy and at least k − r + 1 of its children are themselves
contained in an infinite healthy (r− 1)-fort in their sub-tree Ti. Since these k events are
mutually independent,

q(T, p) = (1− p)
∑

X⊆[1,k]
|X|≤r−1

∏
i∈X

(1− q(Ti, p))
∏
j /∈X

q(Tj , p)

 .

If T is a Galton–Watson tree with offspring distribution ξ then, given that the root has
exactly k children, the sub-trees T1, T2, . . . , Tk are also such (independent) subtrees.
Thus,

q(p) = (1− p)
∑
k≥r

P(ξ = k)
∑
i≤r−1

(
k

i

)
(1− q(p))iq(p)k−i

= (1− p)
∑
k≥r

P(ξ = k)P(Bin(k, 1− q(p)) ≤ r − 1). (3.1)

Define a function hr,p(x), depending implicitly on the distribution ξ, by

hr,p(x) = (1− p)
∑
k≥r

P(ξ = k)P(Bin(k, 1− x) ≤ r − 1).

By equation (3.1), q(p) is a fixed point of hr,p(x). Note that this is closely related to the
fixed point equation (2.1) from [7] with x in place of (1− p)(1− x).

The function hr,p(x) is continuous on [0, 1], 0 ≤ hr,p(x) ≤ (1− p) and since

d

dx
P(Bin(k, 1− x) ≤ r − 1) = kP(Bin(k − 1, 1− x) = r − 1) > 0 (3.2)

for all k ≥ r and 0 < x < 1, hr,p is strictly increasing in [0, 1] unless p = 1. Note that for
any p, hr,p(0) = 0 and so 0 is a fixed point of the function. Using standard techniques for
branching processes, it is shown that the critical probability pc(Tξ, r) is given as follows
in terms of the function hr,p(x).

Lemma 3.2. The critical probability pc(Tξ, r) is given by

pc(Tξ, r) = inf{p | x = hr,p(x) has no solution for x ∈ (0, 1]}. (3.3)

The proof of Lemma 3.2 is given by Claim 3.3 and Lemma 3.4 below.

Claim 3.3. For every p, q(p) is the largest fixed point of hr,p(x) in [0, 1].

Proof. If p = 1 then hr,p(x) = 0 for all x ∈ [0, 1] and so x = 0 is the only fixed point of
hr,p(x) in [0, 1]. Thus q(p), itself being such a fixed point, must be equal to 0.

Therefore assume that p < 1. For any tree T , let Tn be the first n levels of T and
define

qn(T, p) = Pp(v0 is in a healthy (r − 1)-fort of Tn)
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and qn(p) = ETξ(qn(Tξ, p)).
Since the definition of a fort depends only on the neighbourhood of each vertex, a

sub-tree F ⊆ T is an (r − 1)-fort iff for every n ≥ 0, F ∩ Tn is an (r − 1)-fort in Tn;
furthermore, the latter event is decreasing in n. Therefore, qn(T, p)↘ q(T, p) as n→∞
and so also qn(p)↘ q(p).

Following the same recursive argument as before, we see that for every n ≥ 0,
qn+1(p) = hr,p(qn(p)). Note also that for any tree T ,

q0(T, p) = Pp(v0 is initially healthy) = 1− p.

Suppose that x0 is a fixed point of hr,p(x). Then, x0 = hr,p(x0) ≤ 1−p = q0(p). Proceeding
by induction, suppose that for some n ≥ 0, x0 ≤ qn(p). Since hr,p(x) is increasing,

x0 = hr,p(x0) ≤ hr,p(qn(p)) = qn+1(p).

Therefore, x0 ≤ limn→∞ qn(p) = q(p), completing the proof.

There is a small difference between the event that the root of a tree T is the root of
a healthy (r − 1)-fort and the event that some other vertex of T is the root of a healthy
(r− 1)-fort. Fix a vertex v in T that is not the root and consider the probability that v is
the root of a healthy fort, in T . Since v already has a neighbour (its parent) not in the
fort, then v is the root of a healthy (r − 1)-fort iff v has at most r − 2 children that are
not, themselves, roots of healthy (r − 1)-forts. Thus, for T = Tξ and conditioned on v

being a vertex of the tree,

ETξ(Pp(v is the root of a healthy (r − 1)-fort) | v ∈ Tξ)

= (1− p)
∑
k≥r

P(ξ = k)P(Bin(k, 1− q(p)) ≤ r − 2)

= hr−1,p(q(p)).

(3.4)

Since for all s ≥ 1 and p < 1 we have hs,p(x) = 0 iff x = 0 then in particular, q(p) = 0 iff
hr−1,p(q(p)) = 0.

Lemma 3.4. In the space of Galton–Watson trees for a fixed distribution ξ, if q(p) > 0,
then Pp(Tξ percolates) = 0 almost surely. If q(p) = 0, then Pp(Tξ percolates) = 1 almost
surely.

Proof. If p = 1 then q(p) = 0 and clearly Pp(T percolates) = 1. So assume that p < 1.
First, assume that q(p) > 0, with the aim of showing that

ETξ(Pp(Tξ percolates)) = 0.

By equation (3.4), there is a δ > 0 be such that, for every vertex v,

ETξ(Pp(v is in a healthy (r − 1)-fort | v ∈ Tξ)) ≥ δ.

Since ξ ≥ r almost surely, at level t in the tree, there are at least rt vertices. The events
that these vertices are roots of healthy (r − 1)-forts are independent; thus, for every t

ETξ(Pp(every vertex of Tξ at level t is eventually infected)) ≤ (1− δ)r
t

→ 0

as t→∞. Thus, ETξ(Pp(Tξ percolates)) = 0 and hence the set

{T | Pp(T percolates) > 0}

has measure 0.
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On the other hand, suppose that ETξ(Pp(Tξ percolates)) < 1 in hopes of showing
that q(p) > 0. Then, the set of trees

{T | Pp(T percolates) < 1} = {T | Pp(T contains a healthy (r − 1)-fort) > 0}

has positive measure.
Even though the number of infinite trees is uncountable, each tree has only a count-

able number of vertices and these can be thought of as a subset of a common countable
set of vertices. Then, there is a vertex v for which, conditioning on v being a vertex of
the tree,

ETξ(Pp(v is the root of a healthy (r − 1)-fort) | v ∈ V (Tξ)) > 0.

That is, either q(p) > 0 (if v = v0) or hr−1,p(q(p)) > 0. In either case, q(p) > 0, which
completes the proof.

Thus, combining Claim 3.3 and Lemma 3.4, Lemma 3.2 holds and the critical proba-
bility is given as in equation (3.3).

The formulation of the critical probability given by equation (3.3) can be used to
give an explicit formula for the critical probability, pc(Tξ, r). The polynomials grk and
functions Grξ, defined below, are used throughout the remaining sections to analyse
critical probabilities. In the remainder of this section, a formula is given for pc(Tξ, r) in
terms of the function Grξ, along with some basic properties of the functions grk that are
used throughout. Finally, an asymptotic formula for the critical probability of a regular
tree is given.

Definition 3.5. For each r ≥ 2 and k ≥ r, define

grk(x) =
P(Bin(k, 1− x) ≤ r − 1)

x
=

r−1∑
i=0

(
k

i

)
xk−i−1(1− x)i

and for any offspring distribution ξ, set

Grξ(x) =
∑
k≥r

P(ξ = k)grk(x).

Using equation (3.3), the critical probability for Tξ can be characterized in terms of
the function Grξ(x). Note that for p = 0, the equation hr,p(x) = x has a solution at x = 1

and for p = 1, the only solution to hr,p(x) = x is x = 0. Since hr,p(x) = x(1−p)Grξ(x), then

for p < 1, x = hr,p(x) has a solution in (0, 1] iff Grξ(x) = 1
1−p has a solution in (0, 1]. Note

that we have Grξ(1) = 1, and so for p > 0, (1− p)Grξ(1) < 1. Since Grξ(x) is continuous, by

Lemma 3.2, if p < pc(Tξ, r), then supx∈(0,1]G
r
ξ(x) ≥ 1

1−p and if pc(Tξ, r) < p < 1, then for

every x ∈ (0, 1], Grξ(x) < 1
1−p . The following theorem summarizes the relation between

pc(Tξ, r) and Grξ(x).

Theorem 3.6. The critical probability for r-neighbour bootstrap percolation on the
Galton–Watson tree Tξ is, almost surely, given by

pc(Tξ, r) = 1− 1

maxx∈[0,1]G
r
ξ(x)

. (3.5)

Since maxx∈[0,1]G
r
ξ(x) ≥ 1, this implies that

pc(Tξ, r) ≤ max
x∈[0,1]

Grξ(x)− 1. (3.6)
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Before proceeding, a few facts about the functions grk(x) are noted. First, for all
r ≥ 2,

grr(x) =
P(Bin(r, 1− x) ≤ r − 1)

x
=

1− (1− x)r

1− (1− x)

= 1 + (1− x) + (1− x)2 + . . .+ (1− x)r−1 =

r−1∑
i=0

(1− x)i.

(3.7)

For any k > r, P(Bin(k, 1− x) ≤ r) = P(Bin(k, 1− x) ≤ r − 1) + P(Bin(k, 1− x) = r) and
hence

gr+1
k (x) = grk(x) +

(
k

r

)
xk−r−1(1− x)r. (3.8)

For each fixed r ≥ 2 and k ≥ r,

grk+1(x)− grk(x) = −
(

k

r − 1

)
xk−r(1− x)r. (3.9)

Indeed, to prove equation (3.9), let X ∼ Bin(k, 1− x) and Y ∼ Bin(1, 1− x) be indepen-
dent. Then, X + Y ∼ Bin(k + 1, 1− x) and so

xgrk(x) = P(X ≤ r − 1)

= P(X + Y ≤ r − 1) + P(Y = 1 and X = r − 1)

= xgrk+1(x) + (1− x) ·
(

k

r − 1

)
(1− x)r−1xk−r+1

= x

(
grk+1(x) +

(
k

r − 1

)
(1− x)rxk−r

)
,

which shows equation (3.9). Thus, by equation (3.9), for any k ≥ r,

grk+1(x) = grr(x)−
k∑
i=r

(
i

r − 1

)
xi−r(1− x)r ≤ grr(x). (3.10)

In particular, note that Grξ(x) ≤ grr(x).

One simple example of a Galton–Watson tree occurs when the offspring distribution
is constant. When ξ ≡ b, Tξ is the b-ary tree, which has the same critical probability as
the (b + 1)-regular tree, Tb. Note that, in this case, Grξ(x) = grb (x). For r ≥ 2, fixed, the
asymptotic value of pc(Tb, r) as b tends to infinity is included here for completeness.

Lemma 3.7. For each r ≥ 2, pc(Tb, r) = (1− 1/r)
(

(r−1)!
br

)1/(r−1)

(1 + o(1)) as b→∞.

Proof. Fix r ≥ 2 and b ≥ r. The critical probability for Tb in r-neighbour bootstrap
percolation is given by

pc(Tb, r) = 1− 1

maxx∈[0,1] g
r
b (x)

=
maxx∈[0,1] g

r
b (x)− 1

maxx∈[0,1] g
r
b (x)

. (3.11)

For a lower bound on the critical probability, note that

grb (1− y) =
P(Bin(b, y) ≤ r − 1)

1− y
=

1− P(Bin(b, y) ≥ r)
1− y

≥
1−

(
b
r

)
yr

1− y
≥

1− (by)r

r!

1− y
.

EJP 19 (2014), paper 13.
Page 13/27

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-2758
http://ejp.ejpecp.org/


Bootstrap percolation on Galton–Watson trees

Set y0 =
(

(r−1)!
br

)1/(r−1)

so that bryr−1
0 = (r − 1)! and consider

grb (1− y0)− 1 ≥
y0 − (by0)r

r!

1− y0
=
y0

(
1− 1

r

)
1− y0

.

Then, a lower bound on the critical probability is given by

pc(Tb, r) ≥
(1− 1/r) y0

1−y0
1 + (1− 1/r) y0

1−y0
=

(1− 1/r)y0

1− y0
r

≥
(

1− 1

r

)
y0 =

(
1− 1

r

)(
(r − 1)!

br

)1/(r−1)

.

For an upper bound of the function grb (1 − y), consider separately different ranges
for the value of y. Using Chebyshev’s inequality, one can show that if y ≥ 2r/b, then
grb (1− y) ≤ 1.

Consider the function

(1− y)(grb (1− y)− 1) = P(Bin(b, y) ≤ r − 1)− (1− y) = y − P(Bin(b, y) ≥ r). (3.12)

Suppose that b > e4rr and consider y such that (rre4rb−r)1/(r−1) < y < 2r/b. Then
2r/b < 1/2 and

y − P(Bin(b, y) ≥ r) ≤ y −
(
b

r

)
yr(1− y)b−r

≤ y − br

rr
yre−2yb ≤ y − y b

ryr−1

rr
e−4r

= y

(
1− yr−1 br

e4rrr

)
< 0.

Consider now y ≤
(
rre4r

br

)1/(r−1)

. Using equation (3.2) with y in place of 1 − x, the

maximum value for (1− y)(grb (1− y)− 1) occurs at y1 with P(Bin(b− 1, y1) = r − 1) = 1
b

and hence
(
b
r

)
yr−1

1 (1− y1)b−r = 1/r. Thus,

y − P(Bin(b, y) ≥ r) ≤ y1 − P(Bin(b, y1) = r) = y1

(
1− 1

r

)
. (3.13)

By the choice of y1,

yr−1
1 =

1

b
(
b−1
r−1

) (1− y1)−(b−r)

≤ (r − 1)!

br
br

b(b− 1) . . . (b− r + 1)
e2y1b

=
(r − 1)!

br
(1 + o(1)).

(3.14)

Thus, by (3.12), (3.13) and (3.14),

max
y∈[0,1]

(grb (1− y)− 1) ≤ 1

1−
(
rre4r

br

)1/(r−1)

(
1− 1

r

)
y1

≤
(

1− 1

r

)(
(r − 1)!

br

)1/(r−1)

(1 + o(1)). (3.15)

and the upper bound on pc(Tb, r) follows from (3.11).
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3.2 Bounds for fGWr (b)

With the definitions from section 3.1, we are now ready to prove Theorem 1.2: For
every r ≥ 2 there are positive constants cr and Cr so that for every b ≥ r,

cr
b
e−

b
r−1 ≤ fGWr (b) ≤ Cre−

b
r−1 .

The proof of Theorem 1.2 is given in two parts. The lower bound for fGWr (b) is given
in Lemma 3.8, to come, by examining properties of the function Grξ(x). The upper

bound for fGWr (b) is given in Lemma 3.10 by producing a family of Galton–Watson trees
with fixed branching number and small critical probability for r-neighbour bootstrap
percolation. In what follows, some basic properties of the beta function are used. Recall
that beta function is given, for <(x),<(y) > 0, by B(x, y) =

∫ 1

0
tx−1(1 − t)y−1 dt and for

a, b ∈ Z+ satisfies B(a+ 1, b+ 1) = a!b!
(a+b+1)! .

Lemma 3.8. For every r ≥ 2 and for any offspring distribution ξ with E(ξ) = b ≥ r,

pc(Tξ, r) ≥
e−

r−2
r−1

b
e−

b
r−1 .

Proof. By equation (3.10), for any k ≥ r, using H` =
∑`
i=1

1
i to denote the `-th harmonic

number,

∫ 1

0

grr(x)− grk(x)

(1− x)2
dx =

k−1∑
i=r

(
i

r − 1

)∫ 1

0

xi−r(1− x)r−2 dx

=

k−1∑
i=r

(
i

r − 1

)
(i− r)!(r − 2)!

(i− 1)!

=

k−1∑
i=r

1

r − 1

i

i− r + 1

=
k − r
r − 1

+Hk−r.

(3.16)

Therefore, for any offspring distribution ξ, since ξ ≥ r almost surely,∫ 1

0

grr(x)−Grξ(x)

(1− x)2
dx =

∑
k≥r

P(ξ = k)

(
k − r
r − 1

+Hk−r

)
=

Eξ

r − 1
+ E(Hξ−r)−

r

r − 1
.

(3.17)

On the other hand, let M = maxx∈[0,1]G
r
ξ(x). Then by equation (3.5), pc = pc(Tξ, r) =

1 − 1
M . Note that, since grr(x) is decreasing and continuous, grr(0) = r, grr(1) = 1 and

Grξ(x) ≤ grr(x), we have M ∈ [1, r] and there is a unique y ∈ [0, 1] with grr(1 − y) = M .
Then, by (3.7),

∫ 1−y

0

grr(x)−M
(1− x)2

dx =

{
−M − 1

1− x
− log(1− x)−

r−1∑
i=2

(1− x)i−1

i− 1

}1−y

x=0

= (M − 1)(1− 1/y)− log(y) +

r−2∑
i=1

1− yi

i
.
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Note that (M − 1)(1− 1/y) = (y+y2+...+yr−1)(y−1)
y = yr−1− 1. Thus, the above expression

can be simplified, as∫ 1−y

0

grr(x)−M
(1− x)2

dx = yr−1 − 1− log(y) +

r−2∑
i=1

1− yi

i

≥ yr−1 − 1− log(y).

(3.18)

Now, using the definition of y,

pc = 1− 1

M
=
M − 1

M
=

y + y2 + . . .+ yr−1

1 + y + y2 + . . .+ yr−1
=
y(1− yr−1)

1− yr
. (3.19)

Note that for any y ∈ [0, 1),

log

(
1− yr

1− yr−1

)
≤ log

(
1− y2r−2

1− yr−1

)
= log(1 + yr−1) ≤ yr−1

and from this, using (3.19), we obtain

yr−1 − log(y) ≥ log

(
1− yr

1− yr−1

)
− log(y) = − log

(
y(1− yr−1)

1− yr

)
= − log pc.

Since grr(x)−Grξ(x) ≥ 0 then, using (3.17) and (3.18),

− log pc − 1 ≤
∫ 1−y

0

grr(x)−M
(1− x)2

dx ≤
∫ 1

0

grr(x)−Grξ(x)

(1− x)2
dx =

Eξ

r − 1
+ E(Hξ−r)−

r

r − 1

and hence

pc(Tξ, r) ≥ exp

(
−E(ξ)− 1

r − 1
− E(Hξ−r)

)
≥ exp

(
− b− 1

r − 1
− E(Hξ)

)
. (3.20)

Using the inequality Hn ≤ log n+1 for n ≥ 1 and the concavity of the logarithm function
we see that E(Hξ) ≤ log b+ 1 and thus

pc(Tξ, r) ≥ exp

(
−r − 2

r − 1

)
e−

b
r−1

b
,

completing the proof of the lemma.

By Lemma 3.8, the lower bound in Theorem 1.2 holds with cr = e−
r−2
r−1 .

Next let us prove that there exists Cr > 0 so that fGWr (b) ≤ Cre
b
r−1 when b is suffi-

ciently large. We shall do this by first considering a sequence of offspring distributions
that are shown to have critical probability 0.

For each r ≥ 2, define an offspring distribution, denoted by ξr as follows. For every
k ≥ r, set

P(ξr = k) =
r − 1

k(k − 1)
.

Note that for any r, E(ξr) =∞. In Lemma 3.10 below, it is shown that, given b > r suffi-
ciently large, the distribution ξr can be modified by ‘pruning’ to obtain the appropriate
critical probability and mean b.

Claim 3.9. For each r ≥ 2, and for all x ∈ [0, 1], Grξr (x) = 1.
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Proof. We apply induction on r. First, for r = 2,

G2
ξ2(x) =

∑
k≥2

1

k(k − 1)

(
kxk−2 − (k − 1)xk−1

)
= 1−

∑
k≥2

(
1

k(k − 1)
(k − 1)xk−1 − 1

(k + 1)k
(k + 1)x(k+1)−2

)
= 1−

∑
k≥2

0 = 1,

as claimed. Turning to the induction step, assume that the Claim holds for r ≥ 2:
Grξr (x) = 1 for x ∈ [0, 1). Then, for x ∈ [0, 1),

Gr+1
ξr+1

(x) =
∑
k≥r+1

r

k(k − 1)
gr+1
k (x)

=
∑
k≥r+1

r

k(k − 1)

(
grk(x) +

(
k

r

)
xk−r−1(1− x)r

)
(by (3.8))

=
r

r − 1

∑
k≥r

r − 1

k(k − 1)
grk(x)− 1

r
grr(x)

+
∑
k≥r+1

1

r − 1

(
k − 2

r − 2

)
xk−r−1(1− x)r

=
r

r − 1
Grξr (x)− 1

r − 1

(
grr(x)− 1− x− (1− x)r

x

)
=

r

r − 1
− 1

r − 1

(
1− (1− x)r

x
− 1− x− (1− x)r

x

)
(by (3.7))

=
r

r − 1
− 1

r − 1
= 1,

so our claim holds for r + 1, completing the proof.

An immediate corollary of Claim 3.9 is that, for every r ≥ 2, the Galton–Watson tree
Tξr satisfies pc(Tξr , r) = 0.

Lemma 3.10. For every r ≥ 2, there is a constant Cr such that if b ≥ (r − 1) log(4er),
then there is an offspring distribution ηr,b with E(ηr,b) = b and

pc(Tηr,b , r) ≤ Cre
− b
r−1 .

Proof. If b is sufficiently large, the distribution ηr,b is constructed by restricting the
support of the distribution ξr to a finite set of integers and redistributing the remaining
measure suitably. Note that for m ≥ r we have

P(ξr ≤ m) =

m∑
k=r

P(ξr = k) = (r − 1)

m∑
k=r

(
1

k − 1
− 1

k

)
= 1− r − 1

m
. (3.21)

Also, using the convention that H0 = 0,

m∑
k=r

kP(ξr = k) = (r − 1)

m∑
k=r

1

k − 1
= (r − 1) (Hm−1 −Hr−2)

is the part of the expected value contributed by the (m− r+ 1) smallest possible values
of ξr. Given b and r, let

k0 = max{m : (r − 1) (Hm−1 −Hr−2) ≤ b}.
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Then, by the choice of k0,

b < (r − 1) (Hk0 −Hr−2) < (r − 1)Hk0 ≤ (r − 1)(log k0 + 1),

so k0 > e
b−r+1
r−1 ≥ 4r for b ≥ (r − 1) (log(4r) + 1) = (r − 1) log(4er).

Let k1 = k0 − 2r > r. Then by equation (3.21) we have

A = 1−
k1∑
k=r

P(ξr = m) =
r − 1

k1
=

r − 1

k0 − 2r
.

Define K = b −
∑k1
k=r kP(ξr = k), roughly thought of as the unallocated portion of the

expected value. Then, K can be bounded from below by

K ≥
k0∑

k=k1+1

kP(ξr = k) = (r − 1) (Hk0−1 −Hk1−1) ≥ (r − 1)
2r

k0
.

Since b <
∑k0+1
k=r kP(ξr = k), we have that

K <

k0+1∑
k=k1+1

kP(ξr = k) = (r − 1) (Hk0 −Hk1−1) ≤ (r − 1)
2r + 1

k0 − 2r
.

Thus, it follows that K/A ≤ 2r + 1 and for k0 > 4r,

K/A ≥ 2r

(
r − 1

k0

)(
k0 − 2r

r − 1

)
= 2r

(
k0 − 2r

k0

)
> r.

This implies that, for b > (r − 1) log(4er), there exists α ∈ (0, 1) such that K
A = αr + (1−

α)(2r + 1) and hence,

k1∑
k=r

kP(ξr = k) + αAr + (1− α)A(2r + 1) = b.

This is used to define the pruned offspring distribution ηr,b as follows,

P(ηr,b = k) =


P(ξr = k) for r < k ≤ k1, k 6= 2r + 1

P(ξr = r) + αA for k = r, and

P(ξr = 2r + 1) + (1− α)A for k = 2r + 1.

Note that since k0 > 4r, k1 = k0 − 2r > 2r.
This pruning ηr,b of the distribution of ξr is used to give an upper bound on fGWr (b).

Recall that for every k ≥ r, the functions grk(x), given by Definition 3.5, are non-negative
and by equation (3.10), grk(x) ≤ grr(x). By Claim 3.9, Grξr (x) = 1 which shows that,

Grηr,b(x) ≤ Grξr (x) + αAgrr(x) + (1− α)Agr2r+1(x) ≤ 1 +Agrr(x).

Therefore, since grr(x) is decreasing and grr(0) = r,

max
x∈[0,1]

Grηr,b(x) ≤ 1 +Agrr(0) = 1 +Ar,

and so

pc(Tηr,b , r) ≤ Ar =
r(r − 1)

k0 − 2r
<

r(r − 1)

e
b−r+1
r−1 − 2r

< 2er(r − 1)e−
b
r−1

for b > (r − 1) log(4er).

Thus the upper bound in Theorem 1.2 holds with Cr = 2er(r − 1) for b ≥ (r −
1) log(4er), and it is trivially true for some Cr for smaller b. This completes the proof of
the theorem.
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3.3 Bounds for pc(Tξ, r)

3.3.1 Bounds based on higher moments

In this section, we shall prove a lower bound on the critical probability pc(Tξ, r) based on
the (1+α)-moments of the offspring distribution ξ for all α ∈ (0, 1), using a modification
of the proof of Lemma 3.8 together with some properties of the gamma function and
the beta function.

Recall that the gamma function is given, for z with <(z) > 0, by Γ(z) =
∫∞

0
tz−1e−t dt

and for all n ∈ Z+, satisfies Γ(n) = (n − 1)!. For arbitrary <(x),<(y) > 0, the beta
function satisfies B(x, y) = Γ(x)Γ(y)

Γ(x+y) . We shall use the following bound on the ratio of two
values of the gamma function obtained by Gautschi [9]. For n ∈ N and 0 ≤ s ≤ 1,

(
1

n+ 1

)1−s

≤ Γ(n+ s)

Γ(n+ 1)
≤
(

1

n

)1−s

. (3.22)

The proof of Theorem 1.3 if first given for the case α ∈ (0, 1). For r ≥ 3 and α = 1, we
then deduce a lower bound for pc(Tξ, r) by a continuity argument. An analogous bound
for r = 2 and α = 1 is given in Theorem 1.4.

Proof of Theorem 1.3. The proof of the lower bound in this theorem is similar to that
of Theorem 1.2, using bounds on integrals similar to the ones in (3.16) and (3.18), but
with (1− x)2+α in the denominator instead of (1− x)2.

Let r ≥ 2 and let 0 < α < 1. From the definition of the beta function, for any k > r,
we have

∫ 1

0

grr(x)− grk(x)

(1− x)2+α
dx =

k−1∑
i=r

(
i

r − 1

)∫ 1

0

xi−r(1− x)r−2−α dx

=

k−1∑
i=r

(
i

r − 1

)
B(i− r + 1, r − 1− α).

Continuing we obtain

k−1∑
i=r

(
i

r − 1

)
B(i− r + 1, r − 1− α) =

k−1∑
i=r

(
i

r − 1

)
(i− r)!Γ(r − 1− α)

Γ(i− α)

=

k−1∑
i=r

1

i− r + 1

i!

Γ(i− α)

Γ(r − 1− α)

(r − 1)!
.

Using inequality (3.22) we have

i!

Γ(i− α)
= i

Γ(i)

Γ(i− α)
= i

Γ(i− 1 + 1)

Γ(i− 1 + (1− α))
≤ i1+α.

The further steps depend on the value of r. First we consider the case r ≥ 3. This
implies, again using inequality (3.22),

Γ(r − 1− α)

(r − 1)!
=

1

r − 1

Γ(r − 2 + (1− α))

Γ(r − 2 + 1)
≤ 1

(r − 1)(r − 2)α
<

1

(r − 2)1+α
.
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Thus, putting these together, bounding crudely we find that for r ≥ 3∫ 1

0

grr(x)− grk(x)

(1− x)2+α
dx <

k−1∑
i=r

1

i− r + 1

(
i

r − 2

)1+α

<
kα

(r − 2)1+α

k−1∑
i=r

i

i− r + 1

=
kα

(r − 2)1+α
(k − r + (r − 1)Hk−r)

<

(
k

r − 2

)1+α

+ 2

(
k

r − 2

)α
Hk−r

<
3k1+α

(r − 2)α
.

Now we consider the case r = 2. We have

Γ(r − 1− α)

(r − 1)!
= Γ(1− α) =

Γ(2− α)

1− α
<

1

1− α
.

Thus a corresponding bound on our integral is∫ 1

0

g2
2(x)− g2

k(x)

(1− x)2+α
dx <

k1+α + kαHk−2

1− α
<

2k1+α

1− α
.

Thus, proceeding analogously to (3.17) we have

∫ 1

0

grr(x)−Grξ(x)

(1− x)2+α
dx <


2E(ξ1+α)

1−α , if r = 2,

3E(ξ1+α)
(r−2)α , otherwise.

(3.23)

Let us now bound our integral from below by some function of pc. Again, for an offspring
distribution ξ let M = maxx∈[0,1]G

r
ξ(x). Let us recall that we have pc = pc(Tξ, r) = 1− 1

M .
Recall also that, since grr(x) is decreasing and continuous, grr(0) = r, grr(1) = 1 and
Grξ(x) ≤ grr(x), we have M ∈ [1, r] and there is a unique y ∈ [0, 1] with grr(1 − y) = M .
Thus M = 1 + y + . . .+ yr−1 and so

pc = 1− 1

M
=
y(1− yr−1)

1− yr
≥ r − 1

r
y, (3.24)

using 1− yr ≤ r
r−1 (1− yr−1). A lower bound on the integral in question is given by∫ 1

0

grr(x)−Grξ(x)

(1− x)2+α
dx ≥

∫ 1−y

0

grr(x)−M
(1− x)2+α

dx

=

∫ 1−y

0

∑r−1
i=0 (1− x)i −M

(1− x)2+α
dx

=

{
− M − 1

(1 + α)(1− x)1+α
+

1

α(1− x)α
−
r−2∑
i=1

(1− x)i−α

i− α

}1−y

x=0

= − M − 1

(1 + α)y1+α
+
M − 1

1 + α
+

1

αyα
− 1

α
+

r−2∑
i=1

1− yi−α

i− α

≥ −
∑r−2
i=0 y

i

(1 + α)yα
+

∑r−1
i=1 y

i

1 + α
+

1

αyα
− 1

α
. (3.25)
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The approximations for the cases r = 2 and r ≥ 3 are dealt with separately. In the case
r = 2, the expression in (3.25) reduces to

− y

(1 + α)y1+α
+

y

1 + α
+

1

αyα
− 1

α
≥ 1

α(1 + α)yα
− 1

α
. (3.26)

For r ≥ 3, the expression in (3.25) is bounded from below as follows:

−
∑r−2
i=0 y

i

(1 + α)yα
+

∑r−1
i=1 y

i

1 + α
+

1

αyα
− 1

α
≥ − 1 + y

(1 + α)yα
+
yr−2+α + yr−1+α

(1 + α)yα
+

1

αyα
− 1

α

≥ −α− αy + 2αyr−1+α + 1 + α

α(1 + α)yα
− 1

α

=
1− α(y − 2yr−1+α)

α(1 + α)yα
− 1

α
. (3.27)

Define hr,α(y) = 1 − α(y − 2yr−1+α) when r ≥ 3 and hr,α(y) = 1 when r = 2. By
inequalities (3.25), (3.26), and (3.27), for every r ≥ 2,∫ 1

0

grr(x)−Grξ(x)

(1− x)2+α
dx ≥ hr,α(y)

α(1 + α)yα
− 1

α
.

For r ≥ 3, the minimum of hr,α in the interval [0, 1] is positive and is attained at

y = br,α =

(
1

2(r + α− 1)

) 1
r+α−2

.

Thus if y < c′r,α =
(
hr,α(br,α)

2(1+α)

)1/α

then

hr,α(y)

α(1 + α)yα
≥ hr,α(br,α)

α(1 + α)yα
>

2

α
,

and so in this case we obtain∫ 1

0

grr(x)−Grξ(x)

(1− x)2+α
dx >

1

2

hr,α(br,α)

α(1 + α)yα
(3.28)

and thus, combining (3.23) and (3.28), y > c′′r,α(E(ξ1+α))−1/α with

c′′r,α =


(

1−α
4α(1+α)

) 1
α

, if r = 2,

(r − 2)
(
hr,α(br,α)
6α(1+α)

) 1
α

, otherwise.

Note that in the case where y ≥ c′r,α, then y ≥ c′r,α(E(ξ1+α))−1/α since E(ξ1+α) ≥ 1.
Thus, using (3.24), the theorem holds for α ∈ (0, 1) with

cr,α =
r − 1

r
min(c′r,α, c

′′
r,α).

Since for r ≥ 3 we have cr,α → cr,1 > 0 as α → 1, we deduce that Theorem 1.3 holds
for r ≥ 3 and α = 1. However, the value of c′′2,α in our proof tends to 0 as α → 1,
and consequently so does c2,α. We deal with this problem in Theorem 1.4 where an
essentially sharp lower bound on pc(Tξ, 2) is given based on the second moment of ξ,
completing also the proof of the lower bound in Theorem 1.3.

The upper bound in Theorem 1.3 follows from Lemma 3.7 and (3.15) which show
that for any r ≥ 2 there is a constant Ar > 0 such that for any k ≥ r,

max
x∈[0,1]

grk(x)− 1 ≤ Ar
kr/(r−1)

.

Thus the upper bound follows immediately from inequality (3.6).

EJP 19 (2014), paper 13.
Page 21/27

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-2758
http://ejp.ejpecp.org/


Bootstrap percolation on Galton–Watson trees

3.3.2 Bounds for pc(Tξ, 2)

In this section we focus on 2-neighbour bootstrap percolation on Galton–Watson trees.
This specific problem is easier to tackle analytically which gives us an opportunity to
obtain sharp bounds on pc(Tξ, 2). To simplify notation, we write Gξ for G2

ξ.

Proof of Theorem 1.4. First we prove the rather easy bound given in (1.3). By the defi-
nition of function Gξ(x) we see that for each k ≥ 2 we have

Gξ(x) ≥ P(ξ = k)g2
k(x) = P(ξ = k)

(
kxk−2 − (k − 1)xk−1

)
.

Now, g2
2(x) = 2− x so it attains its maximum in the interval [0, 1] at x = 0 with g2

2(0) = 2,

while for k ≥ 3 functions g2
k(x) are maximized at xk = k(k−2)

(k−1)2 , with g2
k(xk) = kk−1(k−2)k−2

(k−1)2k−3 .
Thus formula (1.3) follows immediately from (3.5).

Considering the maximum value of the function g2
k(x),

kk−1(k − 2)k−2

(k − 1)2k−3
=

(
k(k − 2)

(k − 1)2

)k−1(
k − 1

k − 2

)
=

(
1− 1

(k − 1)2

)k−1(
k − 1

k − 2

)
.

One can show, by induction on t, that for k ≥ 3 and t ≥ 1,(
1− 1

(k − 1)2

)t
≤ 1− t

(k − 1)2
+

t(t− 1)

2(k − 1)4
.

In particular, setting t = k − 1 in this inequality yields(
1− 1

(k − 1)2

)k−1

≤ 1− 1

(k − 1)
+

(k − 2)

2(k − 1)3
=

(k − 2)

(k − 1)

(
1 +

1

2(k − 1)2

)
and hence for k ≥ 3, and all x ∈ [0, 1], g2

k(x) ≤ 1 + 1
2(k−1)2 . The maximum value for g2

2(x)

is g2
2(0) = 2 > 1 + 1

2 , but it is certainly true that for all k ≥ 2, g2
k(x) ≤ 1 + 1

2(k−1)2−(k−1) =

1 + 1
(k−1)(2k−3) . Hence

Gξ(x) ≤ 1 + E

(
1

(ξ − 1)(2ξ − 3)

)
which yields the upper bound given by inequality (1.4). Note that the first bound in
inequality (1.4) is essentially sharp as demonstrated by the (b+ 1)-regular tree.

Now let us prove bound (1.5). To simplify notation, for every k, let (ξ)k = ξ(ξ−1)(ξ−
2) . . . (ξ − k + 1) denote the k-th falling factorial. The goal is to approximate Gξ(x) by a
polynomial of degree 2 whose maximum value can be easily calculated.

Consider the Taylor series for Gξ(x) about x = 1. For this, note that Gξ(1) =∑
k≥2P(ξ = k) = 1, G′ξ(1) =

∑
k≥2P(ξ = k)(−1) = −1 and

G′′ξ (1) =
∑
k≥2

P(ξ = k)(−(k − 2)(k + 1)) =
∑
k≥2

P(ξ = k)(−k(k − 1) + 2) = −E((ξ)2) + 2.

Note that for all m ≥ 1, G(m)
ξ (1) < 0, where it exists.

Set P2(x) = 1− (x−1)− (E(ξ)2−2)
2 (1−x)2 = 2−x− (E(ξ)2−2)

2 (1−x)2. It is shown below
that for all x ∈ [0, 1], P2(x) ≤ Gξ(x). Note that

P2(x) =
∑
k≥2

P(ξ = k)

(
g2

2(x)− (k2 − k − 2)

2
(1− x)2

)
.
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Recall that, by equation (3.9), for all x, g2
k+1(x)− g2

k(x) = −kxk−2(1− x)2. Thus,

g2
k+1(x) +

(
(k + 1)2 − (k + 1)− 2

)
2

(1− x)2 −
(
g2
k(x) +

(k2 − k − 2)

2
(1− x)2

)
= −kxk−2(1− x)2 +

(
2k − 2 + 2

2

)
(1− x)2

= k(1− x)2(1− xk−2).

(3.29)

Considering Gξ(x)− P2(x), note that for k = 2, g2
k(x)− g2

2(x) + (k2−k−2)
2 (1− x)2 = 0.

For k ≥ 3, by (3.29),

g2
k(x)− g2

2(x) +
(k2 − k − 2)

2
(1− x)2 =

k−1∑
i=2

i(1− x)2(1− xi−2) ≥ 0.

Hence,

Gξ(x)− P2(x) =
∑
k≥2

P(ξ = k)

(
g2
k(x)− g2

2(x) +
(k2 − k − 2)

2
(1− x)2

)
≥ 0

and so for all x, Gξ(x) ≥ P2(x).
Now, P2(x) is a parabola which attains its maximum value at x = 1− 1

E(ξ)2−2 with

P2

(
1− 1

E(ξ)2 − 2

)
= 1 +

1

E(ξ)2 − 2
− 1

2
(E(ξ)2 − 2)

1

(E(ξ)2 − 2)2
= 1 +

1

2(E(ξ)2 − 2)
.

This immediately implies a lower bound for the critical probability for Tξ,

pc(Tξ, 2) ≥ 1− 1

1 + 1
2E(ξ)2−4

= 1− 2E(ξ)2 − 4

2E(ξ)2 − 3
=

1

2E(ξ)2 − 3
.

3.4 Examples

The (b + 1)-regular tree shows that one cannot hope for a stronger bound based
on the second moment of ξ than the one given by inequality (1.5). What is more, this
bound turns out to be an accurate estimate of critical probability in a number of natural
offspring distributions. A few such examples are examined here for comparison. For
simplicity, we consider only r = 2, and we continue to write Gξ for G2

ξ. In what follows,
the notation ob(1) is used to denote a function tending to 0 as b→∞.

3.4.1 2 or a children

For a ∈ N and b with a ≥ b > 2, consider trees denoted Tξb,a with offspring distribution
P(ξb,a = 2) = a−b

a−2 and P(ξb,a = a) = b−2
a−2 . Note that the branching number of Tξb,a is

br(Tξb,a) = E(ξb,a) = b. We do not present a complete proof of the following theorem.
However, sharp lower bounds on pc(Tξb,a , 2) follow from Theorem 1.4.

Theorem 3.11. The critical probability in 2-neighbour bootstrap percolation on Tξb,a is

pc(Tξb,a , 2) = max

{
1− a− 2

2(a− b)
,

1 + ob(1)

2ab

}
,

with the first quantity being always greater for a ≥ 2b− 1 and the second for a ≤ 2b− 2.
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The random variable ξb,a is supported on only two values and so clearly E((ξb,a)2) is
finite and the assumptions of Theorem 1.4 are satisfied. We have

E((ξb,a)2) = P(ξb,a = a)a(a− 1) + P(ξb,a = 2)2

=
(b− 2)a(a− 1) + 2(a− b)

a− 2

<
(b− 2)a(a− 1)

a− 2
+ 2.

Thus, inequality (1.5) yields a lower bound on the critical probability given by

pc(Tξb,a , 2) >
1

2
(

(b−2)a(a−1)
a−2 + 2

)
− 3

=
1

2 (b−2)a(a−1)
a−2 + 1

=
1 + ob(1)

2ab
,

agreeing asymptotically with the correct value for a ≤ 2b− 2.
For a ≥ 2b − 1 we have in fact pc(Tξb,a , 2) = 1 − 1

2P(ξb,a=2) . The value of critical
probability, in this case, tells us what prevents Tξb,a from percolating when we have
p < pc(Tξb,a , 2). Since a−b

a−2 >
1
2 , after deleting all vertices of degree a+1, the tree almost

surely contains infinite components, with all vertices having degree at most 3, with
branching number c = 2 a−ba−2 > 1. Every initially healthy doubly infinite path contained
in such subtree is an infinite healthy 1-fort in Tξb,a . The critical probability for such
paths to occur is 1/c and so if 1 − p > 1/c then Tξb,a almost surely does not percolate.
Note that exactly the same arguments can be used to prove the first lower bound in
inequality (1.3).

3.4.2 Shifted Poisson

A natural offspring distribution for a Galton–Watson tree is a Poisson distribution. Since
any distribution ξ with P(ξ ≤ 1) > 0 has critical probability 1, consider a Poisson distri-
bution shifted by 2. That is, for each b > 2, let ξbPo be the offspring distribution with the
property that, for each k ≥ 2,

P(ξbPo = k) = e−(b−2) (b− 2)k−2

(k − 2)!
.

Then, E(ξbPo) = b and the function GξbPo(x) is given by

GξbPo(x) =
∑
k≥2

e−(b−2) (b− 2)k−2

(k − 2)!
(kxk−2 − (k − 1)xk−1)

= e−(b−2)(1−x)(2 + (b− 3)x− (b− 2)x2).

Here, the critical probability can be given precisely since the function GξbPo attains its

(global) maximum value when x =
b−5+
√

(b+3)(b−1)

2(b−2) , which belongs to [0, 1] when b ≥ 7/3;
the maximum value is

exp

(
−1

2
(b+ 1−

√
(b+ 3)(b− 1))

)(
−2 +

√
(b+ 3)(b− 1)

b− 2

)
.

Thus, with a little bit of calculation, one can show that, for b ≥ 7/3,

pc(TξbPo , 2) = 1−

 (b− 2)e
b+1−

√
(b+3)(b−1)

2

−2 +
√

(b+ 3)(b− 1)

 =
1

2b2
+

1

3b3
+O

(
1

b4

)
.
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One can apply Theorem 1.4 to the distribution ξbPo since E((ξbPo)2) = b2 − 2. Thus,
(1.5) yields

pc(TξbPo , 2) ≥ 1

2b2 − 7
=

1 + ob(1)

2b2

which is asymptotically correct.

3.4.3 Shifted geometric distribution

Consider now a shifted geometric distribution. For b > 2, let ξbg be defined by

P(ξbg = k + 2) =
1

b− 1

(
b− 2

b− 1

)k
, k ≥ 0.

Then, E(ξbg) = b and the function Gξbg is given by

Gξbg (x) =
2(b− 1)− (2b− 3)x

((b− 1)− (b− 2)x)2
,

and attains its maximum when x = (2b−5)(b−1)
(b−2)(2b−3) with value (2b−3)2

4(b−1)(b−2) . Thus, if b ≥ 5/2,

pc(Tξbg , 2) = 1− 4(b− 1)(b− 2)

(2b− 3)2
=

1

(2b− 3)2
.

On the other hand we see that E((ξbg)2) = 2(b− 1)2; thus (1.5) yields

pc(Tξbg , 2) ≥ 1

4(b− 1)2 − 3
=

1 + ob(1)

4b2
,

again agreeing asymptotically with the true value.

4 Final remarks and open problems

In this paper we study general infinite trees and show that for any b ≥ r and any
ε > 0 there exists a tree with bounded degree, branching number br(T ) = b and critical
probability pc(T, r) < ε. We then show that, by equation (3.20), given an offspring
distribution ξ with P(ξ < r) = 0, for a Galton–Watson tree Tξ we almost surely have

pc(Tξ, r) ≥ exp

(
−E(ξ)− 1

r − 1
− E(Hξ−r)

)
.

Using the concavity of the logarithm function and, setting br(Tξ) = E(ξ) = b, this bound

was simplified to pc(Tξ, r) ≥ cr e
− b
r−1

b , as stated in Theorem 1.2.
However, the bound E(Hξ−r) ≤ log b is very weak unless the distribution ξ is strongly

concentrated around its mean. When ξ is concentrated though, we already know that
pc(Tξ, r) is large, e.g., by Theorems 1.3 and 1.4, as well as by the results for regular trees
in [4] and [7]. With this in mind we conjecture that the family of offspring distributions
ηr,b constructed in the proof of Lemma 3.10 minimizes pc(Tξ, r) up to a factor depending
on r only.

Conjecture 4.1. The upper bound in Theorem 1.2 is essentially sharp, i.e., for r ≥ 2

there are constants cr and Cr such that if b ≥ r then

cre
− b
r−1 ≤ fGWr (b) ≤ Cre−

b
r−1 .
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The next conjecture is an extension of Theorem 1.3 which says that for α ∈ (0, 1]

we have pc(Tξ, r) ≥ cr,α
(
E(ξ1+α)

)−1/α
. For r = 2 and α > 1 such bound does not

hold as is seen by taking ξ = b constant, i.e., a regular tree Tb, when pc(Tb, 2) ∼ 1
2b2 .

However, turning to Lemma 3.7 we observe that for any r ≥ 2, the critical probability
for a regular tree is pc(Tb, r) ∼ cr(b

−r)1/(r−1). This motivates the following conjecture,
extending Theorem 1.3 for r ≥ 3 to all values of α ≤ r − 1.1

Conjecture 4.2. For each r ≥ 2 and α ∈ (0, r − 1] there exists a constant cr,α > 0 such
that for any offspring distribution ξ we have

pc(Tξ, r) ≥ cr,α
(
E(ξ1+α)

)−1/α
.

In Theorems 1.3 and 1.4, we give upper bounds on pc(Tξ, r) based on the
(

r
r−1

)
-

th negative moments of ξ. However, the example of the ξb,a offspring distribution in
Theorem 3.11 immediately shows that negative moments are not, in general, enough
to tightly bound the critical probability from above. It remains unclear what other
characteristics of the distribution ξ might lead to upper bounds on pc(Tξ, r).

There are a number of topics related to bootstrap percolation that have not been
examined in this paper, such as the structure of the final infected set when percola-
tion does not occur or the time of percolation. Fontes and Schonmann [8] showed that
for regular trees, Tb, there is a p′ < pc(Tb, r) such that when vertices are initially in-
fected with probability p < p′ then, almost surely, all connected components induced
by infected vertices in the closure of the initial configuration are finite. Further, with
vertices infected with probability p > p′, almost surely there is an infinite connected
component of infected vertices in the closure. Biskup and Schonmann [6] looked at
the time of percolation for regular trees with vertices initially infected with probabil-
ity p > pc(Tb, r). A possible direction for future study would be an extensions of these
results to Galton–Watson trees.
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