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Maximum one-shot dissipated work from Rényi divergences
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Thermodynamics describes large-scale, slowly evolving systems. Two modern approaches generalize ther-
modynamics: fluctuation theorems, which concern finite-time nonequilibrium processes, and one-shot statistical
mechanics, which concerns small scales and finite numbers of trials. Combining these approaches, we calculate a
one-shot analog of the average dissipated work defined in fluctuation contexts: the cost of performing a protocol in
finite time instead of quasistatically. The average dissipated work has been shown to be proportional to a relative
entropy between phase-space densities, to a relative entropy between quantum states, and to a relative entropy
between probability distributions over possible values of work. We derive one-shot analogs of all three equations,
demonstrating that the order-infinity Rényi divergence is proportional to the maximum possible dissipated work
in each case. These one-shot analogs of fluctuation-theorem results contribute to the unification of these two
toolkits for small-scale, nonequilibrium statistical physics.
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I. INTRODUCTION

Thermodynamics concerns large scales and infinitesimally
slow evolutions. In the thermodynamic limit, a system’s
size approaches infinity and is typified by mean behaviors.
Quasistatic processes proceed slowly enough that the system
remains in equilibrium. Equilibrium quantities include the
temperature T and the free energy F such as Helmholtz’s,
−kBT ln Z (wherein kB denotes Boltzmann’s constant and Z

denotes a partition function).
Two recently developed frameworks generalize thermody-

namic concepts, such as work and heat, beyond slow processes
and infinite sizes. Fluctuation relations interrelate equilibrium
quantities such as F and nonequilibrium processes (e.g., [1–
6]). One-shot statistical mechanics is used to quantify the effi-
ciency with which work can be invested or extracted, including
outside the assumptions of conventional statistical mechanics
(e.g., [7–11]): First, the system may be small, violating the
thermodynamic limit. Second, the work performed in any given
trial—rather than just the work averaged over trials—may be
reasoned about. Third, the system may occupy a quantum state
coherent relative to the energy eigenbasis.

One-shot statistical mechanics relies on the mathematical
toolkit of one-shot information theory, or information theory
beyond i.i.d. (independent and identically distributed variables
and quantum states) (e.g., [13–16]). Conventional information
theory concerns information-processing tasks such as data
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compression. One assumes that n random variables X, or
quantum states ρ, are processed. The variables and states are
assumed to be i.i.d. For example, the probability px that X

evaluates to x is the same for all instances of X. One calculates
the optimal efficiency with which the task can be performed, on
average over n, in the limit as n → ∞. Asymptotic entropies,
such as the Shannon and von Neumann entropies [12], quantify
these efficiencies. These entropies are generalized in one-shot
information theory. Examples include the Rényi divergences
Dα , discussed below. The generalized entropies quantify the
efficiencies with which more-general information-processing
tasks can be performed. For example, few copies of X or ρ

may be processed. The variables or states may not be i.i.d.
One-shot information theory generalizes conventional in-

formation theory, as one-shot statistical mechanics extends
conventional statistical mechanics. A combination of fluctua-
tion relations and one-shot statistical mechanics describes quite
general thermodynamic systems [17].

Transforming one equilibrium state quasistatically into
another requires an amount W of work equal to the difference
between the states’ free energies: W = �F . Implementing a
protocol in finite time yields a nonequilibrium state and costs
extra work, dissipated as heat. This penalty of irreversibility is
called the dissipated work, or irreversible work. The average
〈Wdiss〉 := 〈W 〉 − �F over many trials has been studied in
fluctuation-relation contexts (e.g., [18–20]).1 We define the

1Our discussion of work can be phrased alternatively in terms of
entropy production (e.g., [19]).
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one-shot dissipated work Wdiss := W − �F as the penalty
paid in one trial.

〈Wdiss〉 has been shown to be proportional to three in-
stances of the Kullback-Leibler divergence, or average rel-
ative entropy, D1. D1 quantifies how much two probability
distributions, or two quantum states, differ. (See the “Rényi
divergences” section and [12] for reviews.) 〈Wdiss〉 has been
related to three average relative entropies: (i) a D1 between
phase-space densitiesρ(p,q,t) and ρ̃(p,−q,t), associated with
forward and time-reversed processes [4]; (ii) a D1 between
quantum states ρ(t) and ρ̃(t), associated with forward and
reverse processes [21]; and (iii) a D1 between probability
distributions Pfwd(W ) and Prev(−W ) over the work performed
during the forward and reverse processes.

This D1 belongs to a family of Rényi divergences Dα that
quantify the discrepancies between distributions or between
states. D1 quantifies a discrepancy in terms of an average over
many copies of a distribution or state. The order-∞ Rényi
divergence D∞ quantifies the distinguishability apparent, in
a worst case, from just one copy.

We derive one-shot analogs of all three thermodynamic
equalities. The averages 〈Wdiss〉 and D1 are replaced with the
one-shot Wworst

diss and D∞. The trio reveals the generality of the
proportionality between the worst-case dissipated work and a
one-shot entropy.

We begin by reviewing fluctuation theorems and Rényi
divergences, focusing on D∞. We recall each 〈Wdiss〉 pro-
portionality and derive its one-shot analog. Our main results
relate the maximum possible penalty Wworst

diss of investing
work in finite time to three instances of D∞. We apply our
results to a quantum quench, whose work distribution has
been studied in several settings [20,22–27]. Our one-shot
analogs of fluctuation-relation results illustrate the insights of-
fered by merging fluctuation relations with one-shot statistical
mechanics.

II. BACKGROUND

We review fluctuation theorems, then Rényi divergences.

A. Fluctuation theorems

Consider a system governed by a time-dependent Hamil-
tonian H (λt ). The external parameter λt changes in time:
t ∈ [−τ,τ ]. Suppose the system begins in the thermal state
γ−τ := e−βH (λ−τ )/Z−τ , wherein β denotes a heat bath’s inverse
temperature and Z−τ normalizes the state. Suppose an agent
switches λt from λ−τ to λτ while the system interacts with the
bath. The switching costs work, the amount of which varies
from trial to trial. A probability distribution Pfwd(W ) represents
the probability that a given trial costs work W . By Prev(−W ),
we denote the probability that initializing the Hamiltonian to
H (λτ ) and initializing the system in γτ := e−βH (λτ )/Zτ , then
reversing the drive according to λ−t , outputs work W .

Fluctuation relations such as Crooks’ theorem govern
these distributions [18]. Let �F := F (γτ ) − F (γ−τ ) denote
the difference between the free energy of γτ and that of
γ−τ . (Throughout this article, we shall assume �F is finite.)
Assuming the system is classical, coupled to a bath, and
undergoing a Markovian microscopically reversible evolution,

Crooks proved that

Pfwd(W )

Prev(−W )
= eβ(W−�F ) (1)

[18]. Identical theorems have been shown to govern quantum
systems isolated from the bath [3], or interacting with the bath,
while work is performed (e.g., [5]).

B. Rényi divergences

Let P and Q denote probability distributions over the set
of values {x}. The order-α Rényi divergence quantifies the
distinctness of P and Q [13,28],

Dα(P ||Q) := 1

α − 1
ln

(∫
dx P α(x)Q1−α(x)

)
, (2)

or of quantum states ρ and σ [29]:

Dα(ρ||σ ) := 1

α − 1
ln(Tr(ρασ 1−α)), (3)

wherein Tr denotes the trace, for α ∈ [0,1) ∪ (1,∞).
The order-1 Rényi divergence, known also as the Kullback-

Leibler divergence and the average relative entropy, follows
from the limit as α → 1:

D1(P ||Q) =
∫

dx P (x) ln(P (x)/Q(x)) (4)

for classical distributions, and D1(ρ||σ ) = Tr(ρ[ln(ρ) −
ln(σ )]) for quantum states. D1 quantifies an average of the
information learned when one mistakes Q for P , or σ for ρ,
and then is corrected [30,31].

We focus on the order-∞ divergences: For classical
distributions,

D∞(P ||Q) = ln(min{λ ∈ R : P (x) � λQ(x) ∀x}) (5)

if the support supp(Q) ⊆ supp(P ), and
D∞(P ||Q) = ∞ otherwise. For quantum
states ρ = ∑

i ri |ri〉〈ri | and σ = ∑
j sj |sj 〉〈sj | [32],

D∞(ρ||σ ) = ln

(
max
i,j

{
ri

sj

: 〈ri |sj 〉 
= 0

})
. (6)

Imagine receiving just one copy of a state that is ρ or σ .
Suppose, for simplicity, that the states share the eigenbasis
{|ri〉〈ri |}, which you measure. In the worst case, two events
occur: (i) The outcome, i0, maximizes the ratio ri0/si0 . Since
ri0 is enormous, while si0 is tiny, you guess that you received ρ.
(ii) You then learn that you received σ . The information gained
from event (ii), after (i), equals D∞(ρ||σ ).

III. RESULTS

We now derive equalities between the worst-case work and
(i) phase-space densities, (ii) quantum states, and (iii) work
distributions.

A. Divergences between phase-space densities

Kawai et al. consider a classical system that remains isolated
from the bath while work is performed [4]. Governed by
Hamiltonian dynamics, the system follows a deterministic
trajectory through phase space. Specifying a phase-space point
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(q,p) at any time t uniquely specifies a trajectory and a work
cost W (q,p,t).

An experimenter does not know which trajectory the system
follows in any given forward trial, because the experimenter
ascribes to the system the initial state e−βH (λ−τ )/Z−τ . The
probability that the system occupies an area-(dq dp) region
centered on (q,p) at time t is ρ(q,p,t) dq dp, wherein
ρ(q,p,t) denotes the phase-space density. ρ̃(q,p,t) denotes
the phase-space density after an amount t̃ = 2τ − t of time
has passed during the reverse protocol.

Kawai et al. proceed as follows. As the system loses no
heat while work is performed, the work required to evolve the
system along some trajectory equals the difference between
the final and initial Hamiltonians: W (p,q,t) = H (qτ ,pτ ,τ ) −
H (q−τ ,p−τ ,−τ ). The forward process’s initial ρ and the
reverse process’s initial ρ̃ are equated with thermal states.
The Hamiltonian is assumed to have time-reversal invariance
(TRI): H (q,p,t) = H (q,−p,t). From TRI, the preservation
of phase-space densities by Hamiltonian dynamics, and the
correspondence of ρ(q,p,t) and ρ̃(q,−p,t) to the same Hamil-
tonian, follows the “generalized Crooks relation”

eβ[W(q,p,t)−�F ] = ρ(q,p,t)

ρ̃(q,−p,t)
. (7)

By taking logs, multiplying each side by ρ̃(q,−p,t), and
integrating over phase space, Kawai et al. derive

〈Wdiss〉 = 1

β
D(ρ(q,p,t)||ρ̃(q,−p,t)). (8)

The right-hand side (RHS) is well-defined if the support of
ρ lies in the support of ρ̃: supp(ρ(q,p,t)) ⊆ supp(ρ̃(q,−p,t))
[21].

The nonnegativity of D1 implies that, on average, per-
forming a protocol quickly dissipates positive work. The
work penalty’s nonnegativity has been interpreted as the
second law of thermodynamics [4,33]. According to Stein’s
lemma, D1(P ||Q) quantifies the average probability that an
attempt to distinguish between P and Q will fail [30,34].
D1(ρ(q,p,t)||ρ̃(q,−p,t)) quantifies the distinguishability of
the forward-process density from its time-reverse. D1(P ||Q)
vanishes if and only if P = Q [30]. Equation (8) shows that
reversing the trajectory followed during the forward protocol
yields the trajectory followed during the reverse protocol if and
only if the system dissipates no work on average. No work is
dissipated if the process proceeds quasistatically, such that the
system remains in equilibrium. Hence D1 quantifies roughly
how far from equilibrium the system evolves.

Let us turn from averages over infinitely many trials to single
trials, starting with our first theorem.

Theorem 1. The worst-case dissipated work of the foregoing
protocol is proportional to an order-∞ Rényi divergence
between phase-space distributions:

Wworst
diss = 1

β
D∞(ρ(q,p,t)||ρ̃(q,−p,t)), (9)

if supp(ρ(q,p,t)) ⊆ supp(ρ̃(q,−p,t)).

Proof. First, we take the logarithm of each side of the
generalized Crooks’ relation [Eq. (7)]:

W − �F = 1

β
ln

(
ρ(q,p,t)

ρ̃(q,−p,t)

)
. (10)

We maximize each side of the equation, invoking the loga-
rithm’s monotonicity to shift the maximum into the argument:

Wmax − �F = 1

β
ln

(
max

{
ρ(q,p,t)

ρ̃(q,−p,t)

})
. (11)

Comparing the left-hand side (LHS) with the definition of
Wworst

diss and the RHS with the definition of D∞ yields Eq. (9).
�

Like Eq. (8), Theorem 1 relates dissipated work to a measure
of the difference between ρ(p,q,t) and ρ̃(p,−q,t). The more
work is dissipated during the most expensive possible trial, the
less the forward-process density can resemble its time-reversed
cousin, as measured by D∞. The lesser the resemblance, the
farther the system is expected to depart from equilibrium. As
in Eq. (8), the left-hand side of Eq. (9) is time-independent, so
the right-hand side remains constant for all t ∈ [−τ,τ ].

Equation (9) has the correct quasistatic limit: If work is
invested infinitesimally slowly, the worst amount of work that
can be dissipated—the only amount that can be dissipated—
vanishes: Wmax − �F = �F − �F = 0. Because the system
remains in equilibrium, H (λt ) and β determine the state
completely. The right-hand side of inequality (9) becomes
D∞(ρ(q,p,t)||ρ̃(q,−p,t)) = 0.

Theorem 1 can aid an agent who has imperfect information
about phase-space densities. Kawai et al. recommend using
Eq. (8) to predict 〈Wdiss〉 from ρ and ρ̃. Phase-space densities,
they acknowledge, can be difficult to learn about. So they bound
〈Wdiss〉 with a D1 between coarse-grained densities. Theorem
1 offers an alternative to coarse-graining. One can use the
theorem upon learning just the maximum of ρ/ρ̃, rather than
the densities’ precise forms. Instead of bounding 〈Wdiss〉, one
can calculate a one-shot dissipated work exactly.

One might worry that the RHS of Eq. (9) diverges. For
instance, a point particle has a Dirac δ function ρ if the particle
has a particular momentum. Evaluating D∞ on a divergent
ρ would yield infinity. In reality, however, finite precision
limits measurements of a particle’s position and momentum.
This practicality regulates the divergence, rendering Theorem
1 applicable to realistic particles.

An unbounded example seemingly curtails the theorem’s
applicability: the classical harmonic oscillator (HO). Specif-
ically, take a positively charged classical particle that moves
in one dimension (the x axis), in a potential well centered at
x = 0. Consider turning on and off an electric field. In the
worst case, prima facie, the field pushes the particle to the top
of the well—infinitely high up, costing Wworst

diss = ∞. However,
an HO accurately models a realistic particle only near x = 0.
Farther away, a realistic potential likely flattens, or turns over
into a deeper potential well, or becomes well-modeled by a hard
wall, etc. In real-world situations, therefore, Wworst

diss is finite.
Even extreme settings lead to finite Wworst

diss values. Consider, as
an example, a work protocol P that preserves the system’s
volume, V . The greatest amount W of work that could be
performed would turn the system into a volume-V black hole.
Adding more energy would raise the black hole’s mass, M .
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The mass varies directly with the radius, R: M ∝ R. Hence
adding more energy would violate the protocol’s finite-volume
constraint and so it would not be work performable during P .
Though this example might appear contrived, it has relevance
to contemporary physics: The intersection of general relativity
and quantum thermodynamics, especially together with high-
energy physics, forms a frontier being explored now. Initial
steps in this direction include Refs. [36–38] and many works
inspired by the black-hole-information paradox. We leave a
detailed unification of these fields with one-shot statistical
mechanics as an opportunity for further study.

Interchanging the arguments of D∞ yields the worst-case
forfeited work. One can extract less work by implementing
the reverse protocol at finite speed than by implementing the
protocol quasistatically, due to dissipation. The worst-case
forfeited work

Wworst
forfeit := �F − Wmax (12)

is the most work an agent might sacrifice for time in any finite-
speed reverse trial:

Wworst
forfeit = 1

β
D∞(ρ̃(q,−p,t)||ρ(q,p,t)) (13)

if supp(ρ̃(q,−p,t)) ⊆ supp(ρ(q,p,t)).

B. Divergences between quantum states

Parrondo et al. have quantized Eq. (8) [21]. They consider
a quantum system governed by a quantum Hamiltonian H (λt )
specified by an external parameter λt . Let ρ(t) denote the state
occupied by the system at time t . In the forward protocol, the
system begins in thermal equilibrium: ρ(−τ ) = e−βH−τ /Z−τ .
During t ∈ (−τ,τ ), the system is isolated from the bath, and
an agent invests work to switch λt from λ−τ to λτ . The state
changes unitarily. During the reverse protocol, the system is
prepared in the state ρ̃(τ ) = e−βHτ /Zτ , time runs from t = τ

to t = −τ , and work is extracted via the time-reversed schedule
λ−t .

Assuming that supp(ρ(t)) ⊆ supp(ρ̃(t)), Parrondo et al.
derive

〈Wdiss〉 = 1

β
D1(ρ(t)||ρ̃(t)). (14)

Recycling their setup, we will prove a proportionality
between the worst-case dissipated work and an order-∞
Rényi divergence. We must define “work” explicitly. In some
quantum fluctuation-relation contexts, work is defined in terms
of two energy measurements [3,35]: The system begins in
the thermal state γ−τ . An energy measurement at t = −τ

yields some eigenvalue Ei of H−τ . The system is isolated
from the bath, and the state evolves unitarily. An energy
measurement at t = τ yields some eigenvalue Ẽj of Hτ . As
the system exchanges no heat during the unitary evolution,
the difference between the measurement outcomes equals the
work performed: W = Ẽj − Ei .

We assume that the agent does not learn the initial measure-
ment’s outcome until the end of the protocol. Because the state
begins block-diagonal relative to the initial Hamiltonian, this
operation preserves the state that the agent can most reasonably
attribute to the system.

Theorem 2. The worst-case work dissipated during any such
quantum forward trial is

Wworst
diss = 1

β
D∞(ρ(t) || ρ̃(t)). (15)

Proof. Let ρ(t) = ∑
i pi |i(t)〉〈i(t)| and ρ̃ =∑

j p̃j |j̃ (t)〉〈j̃ (t)| denote the states’ eigenvalue
decompositions. The eigenvalues, and the inner products
〈i(t)|j̃ (t)〉, remain constant throughout the unitary evolution.
D∞(ρ(t)||ρ̃(t)) therefore remains constant. Without loss of
generality, we can evaluate the definition [Eq. (6)] at t = τ :

D∞(ρ(t)||ρ̃(t)) = ln

(
max
i,j

{
pi

p̃j

: 〈i(τ )|j̃ (τ )〉 
= 0

})
. (16)

Let U denote the unitary that evolves the initial state
to the final in the forward process: ρ(τ ) = Uρ(−τ )U †. We
can express the inner product as 〈i(−τ )|U †|j̃ (τ )〉. The ther-
mal natures of ρ(−τ ) and ρ̃(τ ) imply that pi = e−βEi /Z−τ

and p̃j = e−βẼj /Zτ . Since Zτ/Z−τ = e−β�F , Eq. (16) is
equivalent to

D∞(ρ(t)|ρ̃(t)) = ln(max
i,j

{eβ(Ẽj −Ei−�F ) :

×〈i(−τ )|U †|j̃ (τ )〉 
= 0}). (17)

The work dissipated in some forward trial is proportional to
the exponential’s argument. The forward protocol is unable
to map |i(−τ )〉 to |j̃ (τ )〉 if and only if 〈i(−τ )|U †|j̃ (τ )〉 = 0,
i.e., if and only if the condition in Eq. (17) is violated. Hence
the worst-case work that can be dissipated during any forward
trial is proportional to the exponential’s argument, maximized
under the condition in Eq. (17). Rearranging Eq. (17) yields
Eq. (15). �

The discussion of irreversibility, distinguishability, t depen-
dence, the quasistatic limit, and coarse-graining that charac-
terizes the classical Theorem 1 characterizes also the quantum
Theorem 2. Wworst

diss is bounded when H−τ and Hτ have bounded
spectra. Bounded spectra characterize many realistic systems,
including one-shot problems (e.g., [11]).

Let us apply Theorem 2 to a sudden quench. Quantum
quenches’ work distributions have been studied in the context
of the transverse-field Ising model [22,23,26], trapped ions
[20], randomly quenched finite-dimensional systems [24],
Fermi gases [25], and semiclassical approximations [27]. Con-
sider a finite-dimensional quantum system S , e.g., a set of N

qubits (two-level systems). Let H (λt ) denote the Hamiltonian.
The parameter λt is quenched (changed instantaneously) from
λ to λ̃ during the forward protocol and from λ̃ to λ during the
reverse protocol [4]. S begins the forward protocol in the state
ρ(−τ ) = e−βH (λ)/Z−τ , wherein H (λ) = ∑

j Ej |Ej 〉〈Ej |. S
begins the reverse protocol in ρ̃(τ ) = e−βH (λ̃)/Zτ , wherein
H (λ̃) = ∑

j Ẽj |Ẽj 〉〈Ẽj |. Preparing a Gibbs state is equivalent
to randomly picking an energy eigenstate in accordance with
the Gibbs distribution. In the worst case, S begins in the
forward process in the lowest-energy eigenstate of H (λ),
|Emin〉, which is the highest-energy eigenstate of H (λ̃), |Ẽmax〉.
The work dissipated is Wworst

diss = Ẽmax − Emin − �F . Now, we
calculate D∞. The state’s form has no time to change during
the quench. Hence ρ(t) = ρ(0) and ρ̃(t) = ρ(τ ) ∀t . Therefore,
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D∞(ρ(t)||ρ̃(t)) = log (minj,k {λ ∈ R : e
−βEj

Z−τ
� λe−βẼk

Zτ
}) =

log (e−βEmin+βẼmax ) + log(Z−τ /Zτ ). Equation (15) is satisfied.

C. Divergences between work distributions

We have related dissipated work to a divergence D∞
between phase-space densities and to a D∞ between quantum
states. We now relate Wworst

diss to a D∞ between distributions
over possible values of work.

The Kullback-Leiber divergence between Pfwd(W ) and
Prev(−W ) is proportional to the average dissipated work:

1

β
D(Pfwd(W )||Prev(−W )) = 〈W 〉fwd − �F = 〈Wdiss〉 (18)

[39,40]. The first equality follows from the substitution from
Crooks’ theorem [Eq. (1)] for Pfwd(W )/Prev(−W ) in the def-
inition of D(Pfwd(W )||Prev(−W )). We will derive a one-shot
analog of Eq. (18).

Theorem 3. The worst-case work that can be dissipated
in any forward trial is proportional to the order-∞ Rényi
divergence between Pfwd(W ) and Prev(−W ):

Wworst
diss = 1

β
D∞(Pfwd(W )||Prev(−W )), (19)

if the set of possible work-values is bounded.
Proof. By the definition of D∞,

D∞(Pfwd(W )||Prev(−W ))

= ln(min{λ ∈ R : Pfwd(W ) � λPrev(−W ) ∀W }). (20)

Let us solve for the minimal λ-value λmin that satisfies the
inequality. First, we check that we can divide the inequal-
ity by Prev(−W ). Crooks’ theorem implies that Pfwd(W ) =
eβ(W−�F )Prev(−W ). By assumption, Pfwd(W ) and Prev(−W )
are nonzero only if W is finite. Also, �F is finite. Hence
Crooks’ theorem implies that Prev(−W ) = 0 if and only if
Pfwd(W ) = 0. In this case, the inequality becomes 0 � λ0,
which is satisfied by any finite λ and so does not determine λmin.
To solve for λmin, we can restrict our focus to Prev(−W ) 
= 0,
then divide each side of the inequality in Eq. (20) by Prev(−W ):

λmin � Pfwd(W )

Prev(−W )
∀ W. (21)

Substituting into the right-hand side from Crooks’ theorem
yields λmin � eβ(W−�F ). The bound saturates when W as-
sumes its maximal value Wmax: λmin = eβ(Wmax−�F ) = eβWworst

diss .
Substituting into Eq. (20) yields Eq. (19). �

Just as 1
β
D1(Pfwd(W )||Prev(−W )) equals the average, over

many trials, of dissipated work, 1
β
D∞(Pfwd(W )||Prev(−W ))

equals the most work that could be dissipated in any trial. An
agent can calculate this dissipated work upon inferring Pfwd

and Prev from experimental or simulation statistics.
Theorem 3 contains a Rényi divergence between work dis-

tributions, rather than a D∞ between phase-space distributions
or a D∞ between quantum states. Hence Theorem 3 governs
more protocols than Theorems 1 and 2, as it describes all
protocols—quantum or classical, regardless of whether the
system exchanges heat while work is performed—that obey
Crooks’ theorem.

Interchanging the divergence’s arguments yields the worst-
case forfeited work [Eq. (12)]:

Wworst
forfeit = 1

β
D∞(Prev(−W )||Pfwd(W )). (22)

IV. OUTLOOK

We have developed one-shot analogs of three relationships
between the average dissipated work 〈Wdiss〉 and the average
Rényi divergence D1. We related the worst-case dissipated
work Wworst

diss to an order-∞ Rényi divergence D∞ between
classical phase-space distributions, to a D∞ between quantum
states, and to a D∞ between work distributions. The triptych
of theorems demonstrates an unexpected generality of the
equality Wworst

diss = 1
β

D∞(.||.).
Beyond this theoretical contribution, our results may have

applications to experiments and simulations. We applied The-
orem 2 to a quantum quench, whose work distribution has been
studied in diverse settings [20,22–27]. Work distributions have
been studied also for trapped ions [42], single-electron boxes
[43], and classical gases [41].

Applications to such settings could assume many forms.
For instance, experimentalists simulating their systems, before
performing experiments, might infer the right-hand side of
Eq. (9) or of Eq. (15). The Wworst

diss estimate could inform
the preparation of work resources (e.g., a sufficiently charged
battery) sufficient to ensure that any implementation of the
protocol succeeds. Also, dissipated work may manifest as heat.
Equipment such as transistors can break if inundated with too
much heat. Such equipment may be strengthened to withstand
Wworst

diss . Additionally, high-precision measurements of small
heat quantities are being developed (e.g., [44]). Our results
could provide a “sanity check” on whether new instruments
are working properly. If the measured heat exceeds Wworst

diss , the
instrument is likely malfunctioning.

A few practicalities merit consideration in applications of
our theorems. Consider applying Theorem 3 to experimental
data. One measures W in each of several trials and bins the
outcomes to form a histogram. Only a finite number of trials can
be performed, so Pfwd(W ) and Prev(−W ) are estimated with
finite precision [45–47]. Some W = W0 bin in the Prev(−W )
histogram might have height zero, though Prev(−W0) 
= 0.
The worst-case work would appear to diverge. Given physical
expectations that Wworst

diss 
= ∞, one could vary the histograms’
bin widths to model Prev(−W ) better.

Relatedly, the histograms can be smoothed. An agent can
trade off the guarantee that each trial will accomplish its
purpose for the possibility of paying less work (or extracting
more work). An agent’s risk tolerance can be quantified
with a parameter ε ∈ [0,1]. The agent ignores area-ε tails of
the distributions, because they correspond to highly unlikely
W values [48]. This process, called smoothing, has been
introduced into Rényi divergences [15] and into one-shot
statistical mechanics (e.g., [9,11,49–51]). Smoothing offers a
theoretical and practical opportunity to advance this article’s
results further into applications.

Note added. Theorem 3 appeared in a preprint of [17], not
in the published article. Since the first preprint of this article
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appeared, Refs. [48,52–55] have addressed other aspects of the
one-shot-and-fluctuation-relation overlap. Rényi divergences
were applied to fluctuation relations within a resource-theory
model in [49].
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[9] J. Åberg, Nat. Commun. 4, 1925 (2013).

[10] O. C. O. Dahlsten, Entropy 15, 5346 (2013).
[11] M. Horodecki and J. Oppenheim, Nat. Commun. 4, 2059 (2013).
[12] M. A. Nielsen and I. L. Chuang, Quantum Computation and

Quantum Information (Cambridge University Press, Cambridge,
2010).

[13] A. Rényi, in Proceedings of the Fourth Berkeley Symposium
on Mathematical Statistics and Probability (University of
California Press, Berkeley, CA, 1961), Vol. 1, p. 547.

[14] R. Renner, Ph.D. thesis, ETH Zürich, 2005.
[15] N. Datta, IEEE T. Inf. Theor. 55, 2816 (2009).
[16] F. Dupuis, L. Krämer, P. Faist, J. M. Renes, and R. Renner, in Pro-

ceedings of the XVIIth International Congress on Mathematical
Physics, Aalborg, Denmark (World Scientific, Singapore, 2012),
p. 134.

[17] N. Yunger Halpern, A. J. P. Garner, O. C. O. Dahlsten, and V.
Vedral, New J. Phys. 17, 095003 (2015).

[18] G. E. Crooks, J. Stat. Phys. 90, 1481 (1998).
[19] S. Deffner and E. Lutz, Phys. Rev. Lett. 105, 170402 (2010).
[20] R. Dorner, J. Goold, C. Cormick, M. Paternostro, and V. Vedral,

Phys. Rev. Lett. 109, 160601 (2012).
[21] J. M. R. Parrondo, C. V. den Broeck, and R. Kawai, New J. Phys.

11, 073008 (2009).
[22] A. Silva, Phys. Rev. Lett. 101, 120603 (2008).
[23] N. O. Abeling and S. Kehrein, Phys. Rev. B 93, 104302 (2016).
[24] M. Łobejko, J. Łuczka, and P. Talkner, Phys. Rev. E 95, 052137

(2017).
[25] A. Sindona, J. Goold, N. Lo Gullo, and F. Plastina, New J. Phys.

16, 045013 (2014).
[26] A. Gambassi and A. Silva, arXiv:1106.2671.
[27] I. García-Mata, A. J. Roncaglia, and D. A. Wisniacki, Phys. Rev.

E 95, 050102 (2017).

[28] T. van Erven and P. Harremoës, IEEE Trans. Info. Theory 60,
3797 (2014).

[29] S. Beigi, J. Math. Phys. 54, 122202 (2013).
[30] T. Cover and J. Thomas, Elements of Information Theory, A

Wiley-Interscience Publication (Wiley, New York, 2006).
[31] F. Hiai and D. Petz, Commun. Math. Phys. 143, 99 (1991).
[32] M. Tomamichel, M. Berta, and M. Hayashi, J. Math. Phys. 55,

082206 (2014).
[33] C. Jarzynski, Europhys. J. B 64, 331 (2008).
[34] S. Vaikuntanathan and C. Jarzynski, Europhys. Lett. 87, 60005

(2009).
[35] J. Kurchan, arXiv:cond-mat/0007360.
[36] A. Bartolotta and S. Deffner, Phys. Rev. X 8, 011033 (2018).
[37] C. Cirstoiu and D. Jennings, arXiv:1707.09826.
[38] T. Opatrný and L. Richterek, Am. J. Phys. 80, 66 (2012).
[39] A. Gomez-Marin, J. M. R. Parrondo, and C. Van den Broeck,

Europhys. Lett. 82, 50002 (2008).
[40] D. Wu and D. A. Kofke, J. Chem. Phys. 123, 054103 (2005).
[41] G. E. Crooks and C. Jarzynski, Phys. Rev. E 75, 021116

(2007).
[42] S. An, J.-N. Zhang, M. Um, D. Lv, Y. Lu, J. Zhang, Z.-Q. Yin,

H. T. Quan, and K. Kim, Nat. Phys. 11, 193 (2015).
[43] O.-P. Saira, Y. Yoon, T. Tanttu, M. Möttönen, D. V. Averin, and

J. P. Pekola, Phys. Rev. Lett. 109, 180601 (2012).
[44] J. P. Pekola, Nat. Phys. 11, 118 (2015).
[45] A. Pohorille, C. Jarzynski, and C. Chipot, J. Phys. Chem. B 114,

10235 (2010).
[46] C. Jarzynski, Phys. Rev. E 73, 046105 (2006).
[47] N. Yunger Halpern and C. Jarzynski, Phys. Rev. E 93, 052144

(2016).
[48] O. C. O. Dahlsten, M. S. Choi, D. Braun, A. J. P. Garner,

N. Yunger Halpern, and V. Vedral, New J. Phys. 19, 043013
(2017).

[49] S. Salek and K. Wiesner, Phys. Rev. A 96, 052114 (2017).
[50] F. G. S. L. Brandão, M. Horodecki, N. H. Y. Ng, J. Oppenheim,

and S. Wehner, Proc. Natl. Acad. Sci. (U.S.A.) 112, 3275 (2015).
[51] R. van der Meer, N. H. Y. Ng, and S. Wehner, Phys. Rev. A 96,

062135 (2017).
[52] B.-B. Wei and M. B. Plenio, New J. Phys. 19, 023002 (2017).
[53] Á. M. Alhambra, L. Masanes, J. Oppenheim, and C. Perry, Phys.

Rev. X 6, 041017 (2016).
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