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We present a quantitative measure of physical complexity, based on the amount of information
required to build a given physical structure through self-assembly. Our procedure can be adapted
to any given geometry, and thus to any given type of physical system. We illustrate our approach
using self-assembling polyominoes, and demonstrate the breadth of its potential applications by
quantifying the physical complexity of molecules and protein complexes. This measure is particularly
well suited for the detection of symmetry and modularity in the underlying structure, and allows for
a quantitative definition of structural modularity. Furthermore we use our approach to show that
symmetric and modular structures are favoured in biological self-assembly, for example of protein
complexes. Lastly, we also introduce the notions of joint, mutual and conditional complexity, which
provide a useful distance measure between physical structures.

ALGORITHMIC COMPLEXITY

More than forty years ago, Kolmogorov [1] and Chaitin
[2] laid the foundations of algorithmic information theory,
by introducing the concept of algorithmic information
content, or Kolmogorov complexity, for a given string
of information [3]. This measure of complexity is de-
fined as the length of the shortest possible program on a
universal computer that will output the string in ques-
tion. Here we propose a conceptually analogous measure
of the complexity of any connected physical structure.
Instead of a universal computer which translates a pro-
gram into a string of information, we consider a general
framework of self-assembly rules, which act together to
create a physical object. The ‘program’ now is our set of
self-assembly building blocks and rules, the ‘computer’ is
given by the physical interactions of the self-assembling
building blocks, and the ‘output’ is the final structure.
Using this approach we investigate the physical com-
plexity of shapes in two and three dimensions, includ-
ing polyominoes, molecules and protein complexes. Our
work generalizes ideas first explored in [4, 5], and opens
them up to a wide range of applications. Furthermore,
in the context of protein complexes it offers the kind of
biological application of information-theoretic concepts
demanded in [6].

SELF-ASSEMBLY KIT

There are many examples of self-assembling structures
in physics, chemistry and biology [7]. Examples include
thin films [8], micelles [9], viruses [10, 11] and DNA [12–
17]. Our aim is to introduce a general framework for

the theoretical study of self-assembling structures. This
framework can be used to study the properties of real
self-assembling systems, but, more generally, it can also
be used to measure the physical complexity of any con-
struct, self-assembling or not. The exact nature of the
self-assembly framework depends on the underlying phys-
ical system, but it always contains two basic ingredients:
a set of building blocks and a set of rules. We shall call
this combination an assembly kit S. Each building block
i has fi interfaces, which typically are subject to geomet-
ric constraints (depending on the physical system). At-
tached to each interface j of a given building block i is an
integer χij ∈ [1, ..., c]. The c possible values of these in-
tegers are the colours of these interfaces. The number of
distinct colourings of the building blocks depends entirely
on the geometry of the problem. The second ingredient of
the assembly kit is the set of rules, which takes the form
of an interaction matrix between colours. In the simplest
case this matrix is binary, where 1 signifies attraction and
0 signifies no interaction at all. Many more sophisticated
interaction matrices involving repulsion and a continuous
spectrum of energies are easily imaginable.

For any system of self-assembling particles we need to
also specify a model for the actual assembly process. A
convenient choice is a model assuming a single nucleus in
solution [4], which makes the assumption that each dis-
joint object has one fixed nucleus building block which
is surrounded by a solution containing a freely moving
population containing many copies of each type of build-
ing block. Each time step (i) a fixed building block, (ii)
a site adjacent site to it, (iii) a random rotational ori-
entation, and (iv) a building block from the solution are
chosen at random, and the new, randomly rotated build-
ing block becomes fixed to its position if the rules allow it.
Note that some assembly kits always assemble into the
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FIG. 1: An example of deterministic and non-deterministic
self-assembly kits, using simple 2D lattice structures (poly-
ominoes). In both cases, colours A and B attract each other,
but C attracts neither A nor B. No colour attracts itself. The
kit on the left will always assemble into the cross shape while
that on the right will assemble into an irregular cluster, as
there are several ways in which the two blocks can attach.

same shape - these we call ‘deterministic’ - while ones
which contain ambiguous rules are ‘non-deterministic’.
See Figure 1 for an example of a deterministic and a
non-deterministic self-assembly kit.

As a simple example of a self-assembling system, we
will consider self-assembling polyominoes. A polyomino
(also known as a lattice animal) is a set of connected
sites on a (typically square) lattice [18]. These connected
sites are our self-assembly building blocks. Every build-
ing block has four sides (so that fi = 4 for all i), which are
painted with one of c colours. These colours can attract
each other or not, as encoded in a c×c binary interaction
matrix. Each distinct way of colouring a building block
corresponds to a different building block type. We do
not regard rotated colourings as distinct. The geometry
of the 2D lattice gives rise to a particular set of build-
ing block colourings in the context of self-assembly. If
we have c colours, the total number of such colourings is
[19]:

Nc = (c4 + c2 + 2c)/4

These particular colourings are also known as necklaces,
which can be defined as equivalence classes of strings un-
der rotation [19]. The definition of necklaces used here
assumes that the building blocks have a fixed chirality -
in other words that the necklaces which the colours form
on the building blocks are fixed.[43]

THE MINIMUM KIT

Every deterministic assembly kit SA, which always as-
sembles into a structure A, requires a certain amount of

information I(SA) to describe it in some given language
L. Our aim is to minimize this quantity, as we define
the length of the description of the minimum assembly
kit S̃A as the complexity K(A) of structure A:

K(A) = I(S̃A) = min
SA

I(SA)

in analogy to the concept of Kolmogorov complexity.
Any symmetry or modularity which the structure A con-
tains decreases the amount of information required to
describe the structure and will therefore be reflected in
its minimum assembly kit S̃A, and by extension in the
value of K(A).

If a minimum assembly kit is deterministic, an inter-
action matrix A (with elements aij) between a total of c
colours, of which cs self-interact, can be rewritten as:

aij = [1 − (i mod 2)]δi(j+1) + (i mod 2)δi(j−1)

for i ≤ c − cs, and aij = δij otherwise, so that one colour
always only interacts with one other colour. With this
constraint, the amount of information, in bits, required
to describe a self-assembly kit SA, with b building block
types, is:

I(SA) = log2(cs + 1) +

b
∑

i=1

ci log2 c + log2 Fi (1)

The first term relates to the number of self-interacting
colours, the second measures the information required to
describe which ci colours out of the total of c colours
appear on building block i, and the third term log2 Fi
measures the information describing the distinct arrange-
ment of the ci colours on the fi faces of building block
i. For a general building block with fi labelled faces, Fi
takes the form of:

F (ci, fi) =

fi−ci+1
∑

k1=1

fi−ci+2−k1
∑

k2=1

...
fi−ci+(ci−1)−Σ′

∑

kci−1=1

fi!
∏ci

m=1 km!

where Σ′ =
∑ci−2

j=1 k(i)
j , and the k(i)

j signify the number
of times colour j occurs on block i.

For polyominoes Fi = F (ci) = N ′
ci

, where N ′
ci

is the
number of necklaces with exactly ci colours, given by

N ′
ci

= Nci −
ci−1
∑

k=1

(

ci
k

)

N ′
k

with N ′
1 = 1. It follows that N ′

2 = 4, N ′
3 = 9, and

N ′
4 = 6. As before, the complexity K(A) of polyomino A

is the minimum of I(SA) over all possible assembly kits
SA. Note that Wang tiles [20] are a special case of self-
assembling polyominoes. The tile system described in [5]
is also similar to our framework for the case of polyomi-
nos, but (like Wang tiles) only considers self-interacting
colours, and treats rotated tiles as distinct. As a result
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our encoding, based on necklaces, makes symmetry and
modularity in the structure more directly measurable.

If the faces are geometrically unconstrained - as one
would imagine for a node with a set of freely moving
links - and hence unlabelled, we would only need to spec-
ify how much there is of each colour. This can be written

using Fi =
∏ci

j k(i)
j , so that log2 Fi =

∑ci
j log2 k(i)

j . How-
ever, this only works under the condition that multiple
connections between the same pair of building blocks are
prohibited.

The general algorithm we use to find the minimum
assembly kit S̃, and thus the complexity K, for polyomi-
noes and other structures is described in the following
section.

A GENERAL MEASURE OF STRUCTURAL

COMPLEXITY

Below we describe a general algorithm for minimizing
the assembly kit size for a connected physical structure
without relying on steric effects. Taking these into ac-
count can minimize the assembly kit even further, but
their computation is highly dependent on the geometry of
the system and in most cases non-trivial (see Discussion).
Note also that in some structures, such as polyominoes,
some edges of the contact graph can be redundant in the
context of the assembly process. Whether contact graph
edges in general can be redundant or not depends on the
nature of the structure and the assumptions connected
to the self-assembly of that structure (see Discussion).
Similarly, when interfaces are defined by geometry, as
for the four sides of a polyomino building block, it makes
sense to introduce a neutral colour (ν = 1 below). In sys-
tems with a varying number of interfaces on the building
blocks, neutral colours are usually not required (ν = 0).

To minimize the assembly kit we take the following steps:

1. Divide the structure into building blocks (usually
a natural division). The number of building blocks
is the size of the structure, denoted z.

2. Determine the equivalence of these units in terms
of any additional criteria (e.g. types of atoms, pro-
teins). This categorization is the species of build-
ing block.

3. Establish a contact graph aij for the units (in some
cases, such as molecules, this may require setting a
distance cutoff).

4. If edges can be redundant: Consider the space of all
spanning subgraphs of this graph.

5. For the contact graph (in the case of no redundant
edges) or each subgraph (if redundant edges exist):

(a) Classify the (sub)graph according to the num-
ber of connections and (depending on the ge-
ometry) the arrangement of connections.

(b) Label all nodes which are not yet labelled
and which have exactly one unlabelled node
among their neighbours. The new labels dis-
tinguish nodes according to their species as
well as the topologically distinct label distri-
butions among their neighbours.

(c) Repeat step 5b until all nodes are labelled or
no more nodes can be labelled.

(d) All labelled nodes we define as category 1
nodes and any remaining unlabelled nodes
(i.e. nodes with at least two unlabelled neigh-
bours) are defined as category 2 nodes.

(e) Label all category 2 nodes simultaneously ac-
cording to their neighbourhoods.

(f) Repeat step 5e, using the previous labellings
to distinguish neighbourhoods, until labellings
are stable.

(g) These final labels, for nodes in both categories,
denote the building block types. The number
of final labels, or types, is b. These can be
subdivided in to b1 category 1 building block
types and b2 category 2 building block types.
The category 2 type of block i is denoted ti.

(h) The degree of each building block type i in the
contact graph (or subgraph) is the number of
its interfaces fi.

(i) The total number of colours, including ν ∈
{0, 1} neutral colours, is c = 2(b1 − 1) + ν +
∑b2

i,j=1

(

1 −
∏z

k,l=1(1 − (aklδitk δjtl))
)

. The

sum expression gives the number of different
types of interfaces which occur between cate-
gory 2 building block types[44]. The number
of colours ci on building block i is equal to the
number of building block types in its contact
graph neighbour set.

(j) Using b, c, {fi} and {ci} in equation (1), cal-
culate the information I required to specify
this assembly kit, and thus the complexity K
of the structure.

6. If edges can be redundant: Minimize this quantity
over all spanning subgraphs.

Figure 2 illustrates the crucial steps 5b to 5j for a poly-
omino. Figure 3 illustrates how the complexity value K
reflects symmetry and modularity present in the struc-
ture.
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FIG. 2: An illustration of the crucial steps 5b to 5j of the al-
gorithm for minimizing the assembly kit size, in this case for a
polyomino. In every iteration of category 1 labellings (LEFT),
all unlabelled nodes with exactly one unlabelled neighbour are
given labels which distinguish them according to their topo-
logically distinct neighbourhoods of unlabelled and labelled
tiles. This procedure is repeated until no more blocks can be
labelled in this way. The remaining blocks are given category
2 labellings (RIGHT) which are applied simultaneously, with
each label distinguishing the topological neighbourhoods of
the tiles in the previous iteration. Note that in the last itera-
tion the labellings have stabilized, and only the interfaces of
the building block types are updated. For structures in which
edges can be redundant, this operation can be performed for
all spanning subgraphs of the structure’s connectivity graph,
which further reduces the complexity. (In polyominoes, edges
can be redundant, but there are no spanning subgraphs in the
above example.)

APPLICATIONS

The self-assembly approach can be used to calculate
complexity values for any physical structure. In order
to demonstrate the broad range of potential applications
we determine the complexity of (a) molecules and (b)
protein complexes.

The problem of molecular complexity has been stud-
ied extensively over the past seventy years, starting with
work by Pólya [21] and Rashevsky among others [22, 23],
and culminating in a seminal paper by Bertz [24]. These
approaches are based on Shannon entropy rather than
algorithmic information theory and focus on symmetries
rather than the more general concept of modularity. In
molecules, we take atoms to be the building blocks and
chemical bonds to be their interfaces. Simple molecules,
such as those in Figure 4, for which we are only interested
in the bond connectivity, are an example of a structure
in which none of the edges can be regarded as redundant.
This is because, unlike for polyominoes, we are not as-
suming any inherent geometry for the building blocks. If
two atoms play the same self-assembly role but represent
atoms of different atomic species, they must be differen-
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FIG. 3: The complexity values of these four polyomino shapes
illustrate why the self-assembly approach is an effective way of
measuring symmetry and modularity without requiring prior
assumptions. If two shapes are of equal size, the one with
more symmetry and modularity has a lower complexity value
- compare A with B, and C with D. If on the other hand,
two shapes are of similar complexity, but of different size, the
larger one will be more symmetric or modular (compare B
and C).

tiated. This also goes for atoms connected by different
bond types. For example, in glutamine (see Figure 4),
the oxygen atom connected with a double bond is a leaf
of the self-assembly tree just like any of the (implicit) hy-
drogen atoms, but it requires a separate building block.
The two molecules in our example of Figure 4 are the
amino acid glutamine and the explosive nitroglycerine,
which both consist of 20 atoms. Nitroglycerine however
exhibits a much higher degree of modularity, with its
three NO3 groups, and therefore has a much lower com-
plexity of K = 55.3 bits than the glutamine, for which the
value is K = 94.7 bits. Note that nitroglycerine does not
exhibit simple three-fold symmetry, but a more subtle,
hierarchical modularity. Such structural features would
be harder to discover using traditional approaches to the
measurement of molecular complexity [22–24], which do
not take a self-assembly perspective and rely on Shannon
entropy rather than Kolmogorov complexity as a measure
of complexity.

Many important biochemical structures are protein
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FIG. 4: Measuring the complexity of molecules – The explo-
sive nitroglycerine (top) and the amino acid glutamine (bot-
tom) both consist of 20 atoms, but differ greatly in complex-
ity. The highly modular structure of nitroglycerine with its
three NO3 groups means that its complexity value K, at 52.2
bits, is little more than half that of glutamine (K = 91.0
bits). Note that nitroglycerine does not have simple three-
fold symmetry, but a more subtle modular structure, which
the self-assembly approach fully reveals. Note that we do not
consider neutral colours in this structure (ν = 0).

complexes, consisting of several individually formed and
folded protein subunits bound together to produce func-
tional cellular machinery. These subunits may include
different types of protein and several copies of the same
protein. The physical structure of protein complexes, as
with protein themselves, is important in determining the
functionality of the complex. The manner in which the
subunits bond to form the final complex is known as the
quaternary structure of the complex. The 3DComplex
database[25] contains a description of the quaternary
structures of thousands of protein complexes, in terms of
subunit type and inter-subunit bonding. If we have two
proteins which play the same role in the self-assembling
structure but are different proteins, we can choose to
count them as two different building blocks (analogous to
the aforementioned distinction between atomic species in
molecules). In the following analyses we are only inter-
ested in the connectivity of proteins (equivalent to the QS
Topology level in the 3DComplex database), and there-
fore do not distinguish between different proteins. The
two protein complexes in our example of Figure 5 are
a chaperonin complex (E. coli chaperonin GroEL; PDB
identifier: 1oel) and an allergen complex (P. pratense al-
lergen PHL P 6; PDB identifier: 1nlx). Both consist of
14 proteins, but the former displays a much higher de-
gree of symmetry and a much lower complexity value of

(double) symmetry

module subset of

module
subset of

module

a) 1oel (E. coli chaperonin GroEL)

b) 1nlx (P. pratense allergen PHL P 6)

FIG. 5: We measure the complexity of two protein complexes,
with PDB identifiers 1oel (a chaperonin, top) and 1nlx (an al-
lergen, bottom), which have 14 proteins each. The symmetry
of the chaperonin complex means that it has a much lower
complexity value of K = 31.5 bits, compared to K = 50.2
bits for the allergen complex. Note that we are assuming
non-redundant edges in this calculation, so that all building
blocks of the chaperonin complex are category 2 and all build-
ing blocks of the allergen complex are category 1. Further-
more we do not consider neutral colours (ν = 0), and in the
case of the chaperonin complex we have three self-interacting
colours (cs = 3). Note also that both complexes are homo-
mers, i.e. they only have one type of subunit.

K = 31.5 bits, versus K = 50.2 bits for the allergen
(which is still somewhat modular).

More complex protein structures require more unique
inter-subunit bonds types, compared to less complex
structures which can re-use bonds and be constructed
through simple repetition of subunits. As an increase
in bond types corresponds biologically to the presence
of more unique bonding sites on subunit proteins, more
complex protein structures can be thought of as requir-
ing more evolutionary innovation to produce and would
therefore be expected to occur less frequently in biolog-
ical organisms [26, 27]. This hypothesis is confirmed by
Figure 6, which shows a histogram of complexity val-
ues – normalized by the size of the protein complex, to
avoid size effects – for the 15733 protein complexes in
the 3DComplex database [25]. The distribution closely
(R2 = 0.93) follows a power-law decay.

In both of these cases - molecules and protein com-
plexes - we assume geometrically unconstrained faces for
the building blocks; in other words, we use Fi =

∏ci
j kj .

While the chemical bonds of atoms and the interfaces of
proteins are in fact usually constrained, this information
is not part of the structural formula of the molecule or
the contact graph of the protein complex. If this ad-
ditional level of resolution is required, a more realistic
self-assembly model can be constructed, based on the
exact three-dimensional characteristics of the atoms or
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FIG. 6: (Colour online) Histogram of protein quaternary
structure assembly complexity with frequency of occurrence
in the 3DComplex database. Insets illustrate two pairs of
equally sized structures with high and low complexity val-
ues. 1geh, 1i3q, 1q2v, and 1ohh are the PDB identifiers of
the complexes. The plot has an R2 = 0.93 correlation with a
power law decay. Note that in this case we do not distinguish
between different types of subunit.

proteins, and using the F (ci, fi) term specified above.

MODULARITY

The self-assembly perspective provides an intuitive def-
inition of the modularity of a structure: If part of the
structure appears several times, it still only needs to be
encoded once. This is why modularity and symmetry
(being a special case of modularity) lead to more efficient
self-assembly kits and a lower value of the complexity
measure K. Formally we can define the modularity m of
a structure of size z as the average number of times one
of the b different building block types in the minimum
assembly kit is used in the structure, which is simply:

m =
z
b

We can furthermore define a module formally as a con-
nected set of building blocks which appears more than
once in a given structure. Note that modules can over-
lap: A subset of a module could form another module,
appearing a different number of times than the whole
module. The molecule in Figure 4a illustrates such a
case.

The majority of protein complexes in the 3DComplex
database show high modularity values (Figure 7) with
a common trend observable along the b/z = 0.5 line,
indicating many proteins consist of structures involving
two copies of all constituent subunits.

To further illustrate how the complexity K and the
modularity m measure the physical complexity of protein
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FIG. 7: (Colour online) The position of the 15733 protein
complexes from [25] in the space of b (number of building
block types) and z (size of the complex). Many protein com-
plexes are highly modular, and this is true across a wide range
of sizes. In this plot complexes of equal modularity m = z/b
lie on a diagonal line with positive gradient. The lines are
shown for m =1, 2, and 10 (b/z =1, 0.5, and 0.1). The sizes
of the circles show how many complexes lie at a given position
(z, b). The insets show two examples (with PDB identifiers
1kyo and 1b5s), with high and low modularities.

complexes, we consider two of the outliers in the com-
plexity and modularity histograms, the high-complexity
1ohh (Figure 6) and high-modularity 1b5s (Figure 7).
1ohh consists of two copies of bovine F1-ATPase (itself a
protein complex) in complex with its regulatory protein
IF1[39]. The regulatory protein binds simultaneously to
both copies of the main complex, but slightly asymmetri-
cally, leading to asymmetric interactions being recorded
in the 3DComplex database. This asymmetry results in
extra information being required to describe the com-
bined quaternary structure, and the observed high com-
plexity value. 1b5s is a multienzyme complex consist-
ing of multiple copies of dihydrolipoyl acetyletransferase
(E2p)[40]. The E2p protein has the potential to occupy
quasi-equivalent positions, as seen in virus structures[41],
and is also observed to form cubic complexes. The highly-
modular, dodecahedral structure exhibited in 1b5s is an
efficient way of grouping many copies of an active pro-
tein in a geometry that facilitates enzymatic activity: the
large windows in the structure allow passage of the sub-
strate and product between the inner cavity and the sub-
strate. The structure of the protein subunits allows this
structure to be realised with just one building block type,
resulting in high modularity.
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JOINT, CONDITIONAL, AND MUTUAL

COMPLEXITY

If we have two structures A and B with minimum
assembly kits S̃A and S̃B , then the joint minimum as-
sembly kit S̃A,B is the minimum kit which can assem-
ble both structures if an appropriate subset of building
blocks is chosen. The amount of information required to
describe this kit is the joint complexity K(A, B) of A and
B. This definition can easily be generalized to more than
two structures.

Let us define S̃′
A as the subset of S̃A,B which forms

structure A, and S̃′
B as the subset of S̃A,B which forms

structure B (note that e.g. S̃A is not necessarily equal to
S̃′

A due to the colour minimization), so that S̃A,B = S̃′
A ∪

S̃′
B . Furthermore, let us define the conditional minimum

assembly kit S̃A|B as the set of building blocks we need

in addition to S̃′
B in order to form structure A. Then we

can write:

S̃A|B = S̃A,B\S̃′
B

where \ denotes the set theoretic difference operation.
The definition of S̃B|A follows accordingly. Hence we can
also define a conditional complexity K(A|B), which is the
amount of information needed to describe the building
blocks in S̃A|B. Because the way we describe the assem-
bly kit is additive in the number of building blocks, we
can write

K(A|B) = K(A, B) − K ′(B)

since K ′(B) is the information required to describe the
building blocks in S̃′

B . The relationship between K(B)
and K ′(B) is given by

K ′(B) = K(B) +
∑

i

ci log2

cA,B

cB

where cA,B is the total number of colours in S̃A,B and

cB is the total number of colours in S̃B. Because of the
minimization of colours, cA,B = max(cA, cB). Hence, if
cB ≥ cA, then K ′(B) = K(B).

Similarly, we can define a mutual minimum assembly
kit S̃A:B, which corresponds to the intersection

S̃A:B = S̃′
A ∩ S̃′

B = S̃′
A\S̃A|B = S̃′

B\S̃B|A

From this follows the mutual complexity

K(A : B) = K ′(A) − K(A|B) = K ′(B) − K(B|A)
= K ′(A) + K ′(B) − K(A, B)

In order to account for the relative sizes of the struc-
tures we compare using these measures, we can define
relative versions of the above quantities. These are rela-
tive conditional complexity:

Krel(A|B) =
K(A|B)

K ′(B)

O
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Amino acids

5 4

4
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1

6 2 1
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1

Polyominoes

A)
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D)

FIG. 8: POLYOMINOES (left): The two polyominoes share
many building block types, with the only two unique ones be-
ing blocks 5 and 6 (marked in grey). Hence, the joint set is

S̃A,B = {1, 2, 3, 4, 5, 6}, the mutual set is S̃A:B = {1, 2, 3, 4}

and the conditional sets are: S̃A|B = {5} and S̃B|A = {6}.
Building block 5 contributes K(A|B) = 2 log

2
9+2 = 8.4 bits

to the complexity K′(A) of the A shape, while block 6 con-
tributes K(B|A) = 4 log

2
9 = 12.7 bits to K′(B). It follows

therefore that the joint complexity is K(A, B) = 67.4 bits and
the mutual complexity is K(A : B) = 46.4 bits, compared
to the standalone values of K(A) = K′(A) = 54.7 bits and
K(B) = K′(B) = 59.1 bits (see Figure 3). AMINO ACIDS
(right): The two amino acid molecules asparagine (top, C)
and glutamine (bottom, D) share the amino (NH2) and car-
boxyl (CO2H) groups common to all amino acids, as well as
the carboxamide group (CONH2). In a self-assembly frame-
work these two structures have complexities of K(Asn) = 74.3
bits and K(Gln) = 91 bits. While K′(Gln) = K(Gln),
we have K′(Asn) = 78.0 bits. Because the two molecules
share three groups, their joint complexity is not much larger
than their individual complexities, at K(Asn, Gln) = 104.0
bits, and their mutual complexity is not much smaller, at
K(Asn : Gln) = 65 bits, than the complexities of the individ-
ual molecules. Their conditional complexities are correspond-
ingly low, at K(Asn|Gln) = 13 bits and K(Gln|Asn) = 26
bits. The conditional complexities give the amount of infor-
mation required to describe the building blocks (atoms) which
are unique (in their self-assembly role) to the given amino
acid. These atoms are marked with grey circles.

and the relative mutual complexity

Krel(A : B) =
K(A : B)

K(A, B)

Note that the latter measure resembles the Jaccard index
[42]. For an illustration of joint, mutual and conditional
complexity, see Figure 8.
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DISCUSSION

Steric effects – For structures which contain loop struc-
tures formed by repeating units, it is possible to exploit
steric effects in order to reduce the size of the assembly kit
below the minimum size found by our algorithm (which
explicitly excluded such effects in its definition). An ex-
ample of a steric effect would be a polyomino which is
self-limiting in a deterministic way, purely because of the
geometric constraints of the building blocks. As long as
each distinct type of loop structure is formed by building
blocks of a distinct species (or set of species), the amount
of information required to describe this structure can be
taken to be the same as that required to describe an in-
finite chain consisting of the same elements. A simple
example is given in Figure 9. The crucial assumption
which has to hold for this simplification to work is that
the geometry of the loop is specified by the species (and,
by extension, the geometry) of the building block. For
proteins as building blocks of protein complexes, this is a
very reasonable assumption. In the case of molecules
it would furthermore be possible to simplify the self-
assembly kit by introducing building blocks representing
common small loop structures, such as carbon rings.

Multiple nuclei – In principle one could consider be-
ginning the self-assembly with multiple nuclei in place.
Multiple nuclei may, through steric hindrance or mod-
ular repetition, be used to achieve certain structures in
a more efficient way, using fewer building blocks than a
single nucleus would require. This reduction in complex-
ity may however be countered in practical applications
by the difficulty of achieving the required precise rela-
tive displacements of nucleus particles. It is because of
these reasons that we have concentrated on a single nu-
cleus model, as the positioning of multiple nuclei makes
it much more difficult to construct a general measure of
complexity.

Within the single nucleus category, we further distin-
guish between structure with a specified nucleus block
and those with general nucleus blocks. The former case
encompasses those assembly kits which are guaranteed to
produce a given output structure if and only if a specified
block is used as the nucleus (in other words, this block
is placed on the substrate before other blocks are intro-
duced to the system). General-nucleus assembly kits by
contrast will form the same output structure regardless of
which block is placed first. See Figure 10 for an illustra-
tion how specifying a nucleus can reduce the complexity
of a assembly kit.

Which of these classes to employ in a study depends
on the motivating context of the self-assembling system
under consideration. If modelling assembly in a diffusion-
dominated environment, for example, the order in which
interacting particles meet cannot be specified, so the
general-nucleus model is more appropriate. In a con-

2

1 2 1

2

121

2 1 2 1212122

21 21

A

BA B A A B B

FIG. 9: A simple example of a steric effect. The two blocks
1 and 2 have colours A and B on their interfaces. These
colours attract each other. All other faces are neutral. Certain
arrangements of colours will lead to self-delimiting structures
purely because of the geometry of the building blocks. The
complexity of such structures can be taken to be the same
as that of an infinite chain consisting of the same sequence of
blocks, but only if each loop structure inside a bigger structure
has a distinct (set of) species of building blocks.

1

2

3 2

23

4

1
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2

3

3

5

4
4

1

6

1 32 4 5

65

6

5
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9
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11
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* *

FIG. 10: Illustration of nuclei placement. (Top:) If we specify ei-
ther of the two starred blocks as nuclei, deterministic bonding will
result. However, if any other block is used as the nucleus, bond-
ing will be non-deterministic, as both the {1, 0, 0, 4} and {1, 0, 5, 0}
blocks can join the open 2 edges that will form. This self-assembly
kit has a complexity of K = 42.4 bits. (Bottom:) A general nucleus
system to produce the same structure, illustrating the required in-
crease in complexity (K = 98.1 bits).

trolled environment where a nucleus can be placed to
initiate assembly, the single-nucleus model is applicable.
The two cases correspond to different ‘languages’ being
used to measure complexity, and so care must be taken
in comparative studies to only compare numerical com-
plexity values from within one class.

Kolmogorov complexity – Our approach to measuring
physical complexity is motivated by the concept of Kol-
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mogorov complexity. It is however important to note that
while Kolmogorov complexity itself is uncomputable due
to the Halting problem [3], our minimum is not. This is
because the runtime of a finite computer program with
finite output can be infinite, while the assembly time of
a finite shape is always finite [4]. It is possible to de-
fine the actual Kolmogorov complexity of a shape [5],
but this is uncomputable. Our computable complexity
measure K(A) forms a bound on this unattainable quan-
tity, and is dependent on the way in which we encode
the description of the assembly kit. It therefore is useful
for the analysis, classification and comparison of physical
structures, as long as we use a consistent encoding.

CONCLUSION

We present a general approach for measuring the phys-
ical complexity of any connected structure, using the lan-
guage of self-assembly. This approach is capable of de-
tecting symmetry and modularity in a given structure,
because these features significantly decrease the size of
the required self-assembly instruction set. It therefore
provides a powerful tool for automated classification and
categorization of physical structures. In addition, the
connection between self-assembly and complexity is an
argument for the ubiquity of modular and symmetric fea-
tures in biological systems: Since many such systems self-
assemble, evolving sets of self-assembly instructions are
likely to yield symmetric and modular structures, as the
instructions for these are more efficient to evolve.
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